微特电机 ›› 2025, Vol. 53 ›› Issue (8): 78-81.

• 生产技术 • 上一篇    下一篇

异步电机电磁噪声抑制的多学科优化研究

朱一乔1,2,宗振龙1,2,庞  聪1,2,张  成1,2   

  1. 1. 中车永济电机有限公司,西安 710000; 2. 轨道交通牵引电机山西省重点实验室,永济 044500
  • 出版日期:2025-08-28 发布日期:2025-08-28
  • 作者简介:朱一乔( 1988—) ,女,硕士研究生,工程师,研究方向为电机噪声及结构设计分析。 庞聪( 1886—) ,男,硕士研究生,教授级高级工程师, 研究方向为电机设计。

Research on Multidisciplinary Optimization for Electromagnetic Noise Suppression of Asynchronous Motor

ZHU Yiqiao 1,2 , ZONG Zhenlong 1,2 , PANG Cong 1,2 , ZHANG Cheng 1,2#br#   

  1. 1. CRRC Yonhji Electric Co., Ltd., Xi’ an 710000,China; 2. Shanxi Provincial Key Laboratory of Traction Motors for Rail Transit,Yongji 044500,China
  • Online:2025-08-28 Published:2025-08-28

摘要: 针对某个型号的异步牵引电机,建立二维瞬态电磁场模型和利用磁- 固耦合效应的多物理场振动响应模型,实现了电磁-机械耦合系统的动态特性匹配。 通过模态试验和模态置信准则( modal assurance criterion, MAC)相结合的策略修正模型参数,采用 Maxwell 应力张量法与模态叠加法求解电磁振动响应。 基于声学边界元法构建声振耦合模型,仿真与实验对比表明声功率级误差小于 1. 0 dB( A) 。 采用响应面法对电磁力谐波进行多目标优化,通过中心复合实验设计和方差分析筛选关键参数。 最终优化方案与原电机方案对比可知,电机表面振动加速度最高降低 0. 34 m / s2,给出了可有效降低电磁振动的措施,为电磁-机械协同设计提供理论支撑。

关键词: 异步电机, 模态修正, 声振耦合, 多目标优化, 电磁力谐波

Abstract: For a specific model of asynchronous traction motor, a two-dimensional transient electromagnetic field model and a multi-physical field vibration response model utilizing the magnetic-solid coupling effect were established to realize the dynamic characteristic matching of electromagnetic-mechanical coupling system. The model parameters were calibrated by integrating modal testing with the modal assurance criterion (MAC) , and the electromagnetic vibration response is solved by using Maxwell stress tensor method and modal superposition method. Based on the acoustic boundary element method, the acoustic-vibration coupling model is constructed. The comparison between simulation and experiment shows that the error of acoustic power level is less than 1. 0 dB ( A) . The response surface method is used to optimize the electromagnetic force harmonics. The key parameters are selected by the central composite experimental design and variance analysis. Compared to the original design, the optimized solution reduced the maximum surface vibration acceleration by 0. 34 m / s2, the effective measure to reduce electromagnetic vibration was given, which provides theoretical support for the electromagnetic-mechanical collaborative design.

Key words: traction motor, modal correction, acoustic vibration coupling, multi-objective optimization, electromagnetic force harmonic