微特电机 ›› 2025, Vol. 53 ›› Issue (8): 62-70.

• 驱动控制 • 上一篇    下一篇

PID 自整定的永磁同步电机无位置传感器控制

高  雄,郭凯凯,戴  宇,赵金涛   

  1. 安徽理工大学 电气与信息工程学院,淮南 232001
  • 出版日期:2025-08-28 发布日期:2025-08-28
  • 作者简介:高雄 ( 2000—) , 男, 硕士研究生, 研究方向为电机控制。

Position Sensorless Control of Permanent Magnet Synchronous Motor with PID Self-Tuning

GAO Xiong, GUO Kaikai, DAI Yu, ZHAO Jintao   

  1. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China
  • Online:2025-08-28 Published:2025-08-28

摘要: 传统 PID 控制器在永磁同步电机矢量控制系统中通常需要人工调节参数,对操作者经验水平要求较高,很难保证整定参数的控制效果,针对此问题,速度环 PID 控制器采用一种改进的粒子群优化算法整定参数,以增强电机控制系统的鲁棒性。 滑模观测器因其鲁棒性强、结构简单等优点,在永磁同步电机无位置传感器控制中得到广泛应用,然而滑模观测器固有的抖振问题会影响系统的控制性能,针对此问题,在其中引入超螺旋算法,并根据永磁同步电机扩展反电动势模型设计反电动势自适应律,同时采用分段函数与单位化锁相环来抑制转速抖振。 仿真结果表明,基于 PID 自整定的永磁同步电机改进滑模观测器能够有效抑制系统抖振,且精度高。

关键词: PID 自整定, 粒子群优化算法, 滑模观测器, 超螺旋算法, 自适应律, 锁相环

Abstract: The traditional PID controller in the vector control system of permanent magnet synchronous motor (PMSM) usually needs to adjust the parameters manually, which requires high experience level of the operator and is difficult to guarantee the control effect of the rectified parameters. To address this problem, the speed loop PID controller uses an improved particle swarm optimization algorithm to adjust the parameters to enhance the robustness of the motor control system. Sliding mold observer was widely used in PMSM position sensorless control due to its robustness and simple structure, however, the inherent jitter problem of sliding mode observer affects the control performance of the system to address this problem, the super-helix algorithm was introduced and the inverse potential adaptive law was designed according to the extended inverse potential model of PMSM, while the segmented function unit function was used. The segmented function unitized phase-locked loop was used to suppress the rotational speed jitter. The simulation results show that the PMSM improved sliding mode observer based on PID self-tuning can effectively suppress the system vibration with high accuracy.

Key words: PID self-tuning, particle swarm optimization algorithm, sliding mode observer, superhelix algorithm, adaptive law, phase-locked loop