微特电机 ›› 2021, Vol. 49 ›› Issue (6): 49-52.

• 驱动控制 • 上一篇    下一篇

基于改进强跟踪滤波器的PMSM矢量控制

孟得龙, 李宁洲, 卫晓娟   

  1. 兰州交通大学 机电工程学院,兰州 730070
  • 收稿日期:2020-11-19 出版日期:2021-06-28 发布日期:2021-06-22
  • 作者简介:孟得龙(1992—),男,硕士,研究方向为基于牵引传动系统非线性负荷动态特性的重载列车黏着优化控制。Emial:3071556208@qq.com
  • 基金资助:
    国家自然科学基金项目(51665027);甘肃省高等学校创新能力提升项目(2019B-059);甘肃省自然科学基金(20JR5RA406)

Vector Control of Permanent Magnet Synchronous Motor Based on Improved Strong Tracking Filter

MENG De-long, LI Ning-zhou, WEI Xiao-juan   

  1. School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2020-11-19 Online:2021-06-28 Published:2021-06-22

摘要: 为节约永磁同步电机运行成本,提高系统运行品质。本文在传统扩展卡尔曼滤波算法的基础上,利用带多重次优渐消因子的扩展卡尔曼滤波(SMFEKF)算法对永磁同步电机矢量控制系统进行参数估计,实现无速度传感器矢量控制系统的设计。对两种算法分别进行建模和仿真,验证了SMFEKF算法的可行性及优越性。结果表明:基于SMFEKF的矢量控制方法相比较传统EKF算法,在一定程度上减小了系统的非线性、参数变化以及外界干扰带来的影响,消弱了抖振现象,降低了系统的稳态误差,提高了参数估计精度。

关键词: 永磁同步电机, 无速度传感器, 强跟踪滤波器, 矢量控制, 带多重次优渐消因子的扩展卡尔曼滤波器

Abstract: In order to save the operating cost of permanent magnet synchronous motors and improve the quality of system operation. Based on the traditional extended Kalman filter algorithm, the extended Kalman filter algorithm with multiple suboptimal fading factors (SMFEKF) was used to estimate the parameters of the permanent magnet synchronous motor vector control system, and the design of the speed sensorless vector control system was realized. The feasibility and superiority of SMFEKF algorithm were verified by modeling and simulation of the two algorithms. The results show that, compared with the traditional EKF algorithm, the vector control method based on SMFEKF reduces the nonlinearity of the system, the influence of parameter changes and external interference to a certain extent, weakens the chattering phenomenon, reduces the steady state errors of the system , and improves the accuracy of parameter estimation.

Key words: permanent magnet synchronous motor (PMSM), speed sensorless, strong tracking filter, vector control, suboptimal multiple fading extended Kalman filter (SMFEKF)

中图分类号: