微特电机 ›› 2018, Vol. 46 ›› Issue (8): 7-11.doi: 1004-7018-46-8-7-11

• 理论研究 • 上一篇    下一篇

基于改进差分进化的车用驱动电机智能设计

罗子良1,裴同豪2,单丰武3,陈红4   

  1. 1. 深圳市大地和电气股份有限公司,深圳 518106
    2. 华中科技大学,武汉 430074
    3. 江西江铃集团新能源汽车有限公司,南昌 330000
    4. 潍坊光电产业园服务中心,潍坊 261061
  • 收稿日期:2017-12-09 出版日期:2018-08-28 发布日期:2018-08-28
  • 作者简介:罗子良(1974—),男,本科,研究方向为新能源车用驱动电机设计。

Intelligent Optimization Method for Vehicle Drive Motor Based on Improved Differential Evolution

LUO Zi-liang1, PEI Tong-hao2, SHAN Feng-wu3, CHEN Hong4   

  1. 1. Shenzhen Greatland Electrics Inc.,Shenzhen 518106,China
    2. Huazhong University of Science and Technology,Wuhan 430074,China
    3. JMCG New Energy Vehicles Co.,Ltd.,Nanchang 330000,China
    4. Weifang Optoelectronics Industrial Park Service Center,Weifang 261061,China
  • Received:2017-12-09 Online:2018-08-28 Published:2018-08-28

摘要:

研究了一种基于有限元、差分进化算法与帕累托算法的智能自动优化方法,可以改进内置永磁电机用于车用驱动系统时传统优化算法在多变量、多目标优化方面存在的所需评估模型众多,优化时间长,在优化目标指标范围内优化结果单一等不足,并针对一台内嵌式永磁同步电机进行了仿真优化及对比。结果表明,该算法可以给出接近,甚至优于人工优化的一系列符合优化目标指标范围的结果,可以直观地选取优化结果中的最适最优电机参数组合,同时优化时间只有人工优化的十分之一,大幅提升了电机研发与设计的效率与质量。

关键词: 车用驱动电机, 内置式永磁同步电机, 差分进化算法, 帕累托算法, 自动智能优化

Abstract:

An intelligent automatic optimization method based on finite element analysis, differential evolution and pareto algorithm was proposed to overcome the shortcomings of the traditional optimization algorithm in multivariable and multi-objective optimization. In a case study, an IPMSM was optimized. It is shown that a series of optimization results given by this algorithm was not worse than the optimization results given by manual optimization, and they were all conform to the requirements of the optimization. The proposed optimization method could make it easier to select a best optimization result by giving a very clear view about distribution of the optimization results in the objective plane. And the optimization method, which is time-saving compared with the manual optimization, could improve the efficiency and quality of the motor design.

Key words: vehicle drive motor, interior permanent magnet synchronous motor (IPMSM), differential evolution algorithm, pareto algorithm, intelligent automatic optimization

中图分类号: