微特电机 ›› 2025, Vol. 53 ›› Issue (12): 78-82.

• 生产技术 • 上一篇    下一篇

卷积注意力融合的微特电机轴承多故障智能诊断

刘  龙1,郑  磊1,任曦霖2   

  1. 1. 国能锦界能源有限责任公司,神木 719300;  2. 西安电子科技大学,西安 710071
  • 出版日期:2025-12-28 发布日期:2025-12-28
  • 作者简介:刘龙( 1988—) ,男,本科,工程师,研究方向为火电厂热控自动化。 郑磊( 1987—) ,男,本科,高级工程师,研究方向为火电厂热控自动化。 任曦霖( 1991—) ,男,博士,工程师,研究方向为电气工程及其自动化。
  • 基金资助:
    陕西省科学技术厅重点研发计划项目( 2023LY-GJLA-28)

Intelligent Diagnosis of Multi-Faults in Micro-Special Motor Bearings with Fused Convolutional Attention

LIU Long1,ZHENG Lei1,REN Xilin2   

  1. 1. Guoneng Jinjie Energy Co. , Ltd. , Shenmu 719300,China;  2. Xidian University,Xi’ an 710071,China
  • Online:2025-12-28 Published:2025-12-28

摘要: 微特电机作为精密控制系统的核心驱动部件,其轴承多故障并发问题严重影响了系统的可靠性和安全性。 本文针对传统诊断方法在特征提取与识别精度方面的不足,基于双通道注意力机制,结合特征金字塔结构,提出了一种深度学习模型。 通过空间与时间双通道注意力机制强化关键故障特征,利用特征金字塔实现多尺度特征融合,并引入自适应噪声抑制模块提升模型在强噪声环境下的鲁棒性。 基于自主搭建的微特电机轴承测试平台,采集了包括内圈、外圈、滚动体单一及复合故障在内的多工况数据。 实验结果表明,所提模型在测试集上准确率接近100%,较传统方法在多项性能指标上均有显著提升。 研究验证了该方法在解决微特电机复杂工况下多故障特征耦合问题方面的有效性。

关键词: 微特电机, 轴承故障诊断, 故障类型识别, 注意力机制, 特征金字塔, 深度学习

Abstract: As the core driving component of precision control systems,micro-special motors face significant challenges in system reliability and safety due to the concurrent fault issues in their bearings. This paper addresses the limitations of traditional diagnostic methods in feature extraction and recognition accuracy by proposing a deep learning model based on a dual-channel attention mechanism combined with a feature pyramid structure. This model enhances key fault features through spatial and temporal dual-channel attention mechanisms, achieves multi-scale feature fusion using a feature pyramid,and incorporates an adaptive noise suppression module to improve robustness in high-noise environments. Based on a self-built micro-special motor bearing test platform, multi-condition data were collected, including single and compound faults of the inner ring,outer ring,and rolling elements. Experimental results demonstrate that the proposed model achieves an accuracy of close to 100% on the test set,with significant improvements in multiple performance metrics compared to traditional methods. The study validates the effectiveness of this approach in addressing the coupling of multi-fault features in micro-special motors under complex working conditions.