微特电机 ›› 2025, Vol. 53 ›› Issue (12): 83-87.

• 生产技术 • 上一篇    

基于密集卷积与 Dijkstra 的风机叶片暂态缺陷声纹识别

陈先中1,彭  睿1,梁子卓1,黄  健1,张自强2   

  1. 1. 华电( 浙江) 新能源有限公司,杭州 311500; 2. 华电( 浙江) 新能源有限公司长兴弁山分公司,长兴 313000
  • 出版日期:2025-12-28 发布日期:2025-12-28
  • 作者简介:陈先中( 1990—) ,男,本科,工程师,主要研究方向为风电机组能效提升和缺陷分析等。 彭睿( 1999—) ,女,本科,助理工程师,主要研究方向为电力系统继电保护及自动化等。 梁子卓( 2000—) ,男,本科,助理工程师,主要研究方向为电气工程等。 黄健( 1992—) ,男,专科,助理工程师,主要研究方向为风机缺陷分析等。 张自强( 1992—) ,男,本科,助理工程师,主要研究方向为风电机组可靠性提升等。

Temporary Defect Voiceprint Recognition of Wind Turbine Blades Based on Dense Convolution and Dijkstra Algorithm

CHEN Xianzhong1,PENG Rui1,LIANG Zizhuo1,HUANG Jian1,ZHANG Ziqiang2   

  1. 1. Huadian ( Zhejiang) New Energy Group Cooperation Co., Ltd., Hangzhou 311500,China;
    2. Huadian ( Zhejiang) New Energy Group Cooperation Co., Ltd., Changxing Benshan Branch,Changxing 313000,China
  • Online:2025-12-28 Published:2025-12-28

摘要: 由于风机叶片的声发射信号在传播路径上具有非线性特征,难以通过风机叶片残余声纹信号反映风机叶片的振动特性,导致风机叶片暂态缺陷声纹识别的准确率较低。 因此,提出了一种基于密集卷积与 Dijkstra 的风机叶片暂态缺陷声纹识别方法。 对风机叶片声纹信号进行分帧处理,应用 Dijkstra 算法从某一帧开始,计算声纹信号帧之间的最短路径,对齐风机叶片原始声纹信号。 使用经验模态分解算法从原始声纹信号中提取声音子信号,将符合模态分量的子信号作为模态分量,得到风机叶片残余声纹信号,直接地反映风机叶片的振动特性。 根据模态分量能量局部极小值判断强相关模态向量,进行声纹信号重构。 将重构的声纹信号与密集卷积相结合,构建识别模型,通过交叉熵损失函数以及损失函数相结合进行优化,输出风机叶片缺陷识别结果。 实验结果表明,所设计的方法识别了正常叶片、裂纹叶片和磨损叶片的声纹信号频率,分别为 3 800 Hz、4 017 Hz 和 3 972 Hz,符合实际情况;在不同缺陷程度的缺陷识别中,所设计方法能准确识别出单缺陷以及多缺陷,识别准确率较高。

关键词: 经验模态分解, Dijkstra 算法, 风机叶片, 暂态缺陷, 声纹信号

Abstract: Due to the nonlinear characteristics of the acoustic emission signal of wind turbine blades in the propagation path,it is difficult to reflect the vibration characteristics of wind turbine blades through residual voiceprint signals,resulting in low accuracy of temporary defect voiceprint recognition of wind turbine blades. Therefore,a wind turbine blade temporary defect voiceprint recognition method based on dense convolution and Dijkstra is proposed. Frame the voiceprint signals of wind turbine blades,apply Dijkstra algorithm to calculate the shortest path between voiceprint signal frames starting from a certain frame,and align the original voiceprint signals of wind turbine blades. Extract sound sub-signals from the original voiceprint signal using empirical mode decomposition algorithm,and use sub-signals that conform to the modal components as modal components to obtain residual voiceprint signals of wind turbine blades, which directly reflect the vibration characteristics of wind turbine blades. Determine strongly correlated modal vectors based on local minima of modal component energy and reconstruct voiceprint signals. Combine the reconstructed voiceprint signal with dense convolution to construct a recognition model,and optimize it through a combination of cross entropy loss function and loss function to output the recognition results of wind turbine blade defects. The experimental results showed that the designed method identified the frequencies of voiceprint signals for normal blades,cracked blades,and worn blades,which were 3 800 Hz,4 017 Hz,and
3 972 Hz,respectively,which were in line with the actual situation;the designed method can accurately identify single and multiple defects with high recognition accuracy in defect recognition of different degrees of defects.

Key words: empirical mode decomposition,Dijkstra algorithm,fan blades,temporary defect,voiceprint signal