微特电机 ›› 2025, Vol. 53 ›› Issue (11): 55-60.

• 驱动控制 • 上一篇    下一篇

融合 CNN 与变异系数法的感应电机故障诊断研究

李耀华,高  赛,徐志雄,郭伟超,王钦政,王自臣,种国臣,黄汉旋,张  茜,刘亚辉   

  1. 长安大学 汽车学院,西安 710064
  • 出版日期:2025-11-28 发布日期:2025-11-28

Fault Diagnosis of Induction Motor Based on Fusion CNN and Coefficient of Variation

LI Yaohua,GAO Sai,XU Zhixiong,GUO Weichao,WANG Qinzhen,WANG Zichen,CHONG Guochen,HUANG Hanxuan,ZHANG Qian,LIU Yahui   

  1. School of Automotive,Chang’ an University,Xi’ an 710064,China
  • Online:2025-11-28 Published:2025-11-28

摘要: 为解决传统电机进行转子断条故障诊断信号特征分析时,存在过于依赖先验知识与人工经验等问题, 提出融合卷积神经网络( convolutional neural network,CNN) 与变异系数的感应电机故障诊断方法。 利用感应电机三相电流平方和的时域图,建立卷积神经网络采用图像辨识进行故障诊断,并针对图像区分不明显的故障,融合变异系数进行故障诊断。 经过测试,该方法可实现对正常状态、短路环故障、一根导条断裂和两根导条断裂的精确识别。三相电流平方和时域图反映出不同工况下感应电机的故障特征,采用图像辨识进行故障诊断,在图像区分不明显的问题。 融合 CNN 与变异系数结合两者优势,可准确识别电机不同故障。

关键词: CNN, 变异系数, 感应电机, 故障诊断

Abstract: To solve the problems such as excessive reliance on prior knowledge and manual experience when diagnosing rotor broken bar faults through traditional motor signal feature analysis,an induction motor fault diagnosis method integrating convolutional neural network ( CNN) and coefficient of variation is proposed. The time-domain graph of the sum of squares of the three-phase currents of the induction motor is utilized to establish a convolutional neural network for fault diagnosis using image recognition. For faults with indistinct image distinctions,the coefficient of variation is fused for fault diagnosis. After testing,this method can accurately identify the normal state,short-circuit loop faults,the breakage of one conductor and the breakage of two conductors. The square and time-domain graphs of the three-phase current reflect the fault characteristics of the induction motor under different working conditions. Thus, image recognition can be used for fault diagnosis,but there is also the problem of indistinct image distinction. By integrating the advantages of CNN and coefficient of variation,different faults of the motor can be accurately identified.

Key words: convolutional neural network,coefficient of variation,induction motor,fault diagnosis