微特电机 ›› 2025, Vol. 53 ›› Issue (11): 48-54.

• 驱动控制 • 上一篇    下一篇

改进天牛须搜索算法的永磁同步电机参数辨识

李  浩,王靖岳,王  哲   

  1. 沈阳理工大学 汽车与交通学院,沈阳 110159
  • 出版日期:2025-11-28 发布日期:2025-11-28

Parameter Identification of Permanent Magnet Synchronous Motor with Improved Beetle Antennae Search Algorithm

LI Hao,WANG Jingyue,WANG Zhe#br#   

  1. School of Automotive and Transportation,Shenyang University of Science and Technology, Shenyang 110159, China
  • Online:2025-11-28 Published:2025-11-28

摘要: 针对天牛须搜索算法辨识永磁同步电机容易出现局部极值引起的算法收敛缓慢,识别效果不准确的问题,提出改进型天牛须搜索算法辨识永磁同步电机参数的方法。 该方法以天牛为研究对象,采用传统的粒子群算法,对其进行优化,使其在初始定位及运动轨迹上保持一致。 在迭代过程中,天牛群的位置更新规则不再是简单的依赖于历史最优和全局最优的单一更新策略,而是在此基础上引入了天牛“ 左须-右须” 的思想,使其在每一步的迭代中都增加了对周围环境的判定,能够更加灵活的适应环境的不断变化。 在 Matlab / Simulink 中进行模拟仿真实验,结果表明,天牛须改进粒子群算法收敛速度更快,辨识精度更高。 其中,对定子电阻的辨识误差为 0. 647%;d、q 轴电感辨识误差分别为 0. 609%和 0. 011 999%;永磁体磁链的辨识误差为 0. 052%。

关键词: 永磁同步电机, 参数辨识, 天牛须搜索算法, 粒子群算法

Abstract: Aiming at the problem of slow convergence and inaccurate recognition effect caused by the local extreme value of the beetle antennae search algorithm for recognising permanent magnet synchronous motors, a kind of improved beetle antennae search algorithm is proposed to recognise the parameters of permanent magnet synchronous motors. The method takes the beetle as the research object and uses traditional particle swarm optimization to optimize it, ensuring consistency in initial positioning and motion trajectory. In the iterative process,the position update rule of the beetle herd is no longer simply based on a single update strategy that relies on historical and global optima. Instead, the idea of " left
whisker-right whisker" is introduced on this basis, which increases the judgment of the surrounding environment in each iteration step and can adapt more flexibly to the constantly changing environment. The simulation experiments are conducted in Matlab / Simulink. The results show that the improved particle swarm algorithm for beetle antennae converges faster and have higher recognition accuracy. Among them, the identification error of stator resistance is 0. 647%; the identification errors of d、 q axis inductance are 0. 609% and 0. 011 999%, respectively; the identification error of permanent magnet magnetic flux identification is 0. 052%.

Key words: permanent magnet synchronous motor, identifying parameters, beetle antennae search algorithm, particle swarm algorithm