微特电机 ›› 2025, Vol. 53 ›› Issue (11): 42-47.

• 驱动控制 • 上一篇    下一篇

改进滑模观测器下的 PMSM 无传感器控制

郝宏伟1,蒋  波1,谷  栋2   

  1. 1. 国能锦界能源有限责任公司,神木 719300; 2. 国网山东省电力公司菏泽供电公司,菏泽 274000
  • 出版日期:2025-11-28 发布日期:2025-11-28

Research on Data Augmentation Methods for Motor Anomaly Detection Based on Generative Adversarial Networks

HAO Hongwei1,JIANG Bo1,GU Dong2   

  1. 1. Guoneng Jinjie Energy Co.,Ltd.,Shenmu 719300,China;
    2. State Grid Shandong Electric Power Company Heze Power Supply Company,Heze 274000,China
  • Online:2025-11-28 Published:2025-11-28

摘要: 在实际工业场景中,电机异常数据稀缺且获取成本高昂,导致基于深度学习的异常检测模型面临严重的数据不平衡问题,进而泛化能力不足。 针对这一问题,本文设计了一种改进的生成对抗网络架构,引入全局—局部融合模块,有效增强了模型对时间序列中全局时间依赖与局部相似性特征的捕获能力。 该方法旨在学习电机正常与罕见异常状态下振动信号的高维分布与时间动态特征,以此生成高质量、多样化的合成异常时间序列数据。 实验结果表明,基于该方法生成的合成数据在时域和频域特征上与真实数据高度一致,有效扩充了训练数据集。 最终,经增强数据训练后的异常检测模型,其准确率达到 98. 7%,召回率提升至 97. 9%,F1 值达 98. 3%,均得到显著提升,为解决工业设备监测中的小样本、不平衡数据问题提供了有效的技术途径。

关键词: 生成对抗网络, 电机异常检测, 数据增强, 时序模型, 不平衡数据

Abstract: In practical industrial scenarios,motor anomaly data is scarce and costly to acquire,leading to severe data imbalance issues for anomaly detection models based on deep learning, which in turn results in insufficient generalization capabilities. To address this challenge, this paper proposes an enhanced generative adversarial network architecture incorporating a global-local fusion module. This innovation significantly strengthens the model ’ s ability to capture both global temporal dependencies and local similarity features within time series data. The method aims to learn the highdimensional distribution and temporal dynamics of vibration signals under both normal and rare abnormal motor states, thereby generating high-quality, diverse synthetic abnormal time series data. Experimental results demonstrate that the synthetic data generated by this method exhibits high consistency with real data in both time-domain and frequency-domain features,effectively expanding the training dataset. Ultimately,the anomaly detection model trained on the augmented data achieved an accuracy of 98. 7%, a recall rate of 97. 9%, and an F1 score of 98. 3%—all representing significant improvements. This approach provides an effective technical solution for addressing the challenges of small-sample and
imbalanced data in industrial equipment monitoring.

Key words: generative adversarial networks, motor anomaly detection, data augmentation, time series models, imbalanced data