微特电机 ›› 2024, Vol. 52 ›› Issue (8): 14-19.

• 设计分析 • 上一篇    下一篇

基于代理模型的不对称极永磁电机优化设计

洪佳琪,季  宇,卢琴芬   

  1. 浙江大学 电气工程学院,杭州 310027
  • 收稿日期:2024-05-24 出版日期:2024-08-28 发布日期:2024-09-30

Optimization Design of Asymmetric-Pole Permanent Magnet Motors Based on a Surrogate Model

HONG Jiaqi, JI Yu, LU Qinfen   

  1. College of Electrical Engineering, Zhejiang University,Hangzhou 310027, China
  • Received:2024-05-24 Online:2024-08-28 Published:2024-09-30

摘要: 针对不对称磁极 V 型内置式永磁同步电机进行有限元优化耗时长的问题,提出了基于 BP 神经网络代理模型的优化算法。 基于有限元模型对采样点进行性能计算,构建样本数据库,将转子相关结构参数作为优化变量,以高平均转矩和低转矩波动为优化目标。 基于样本数据使用 BP 神经网络得到代理模型,采用 NSGA-Ⅱ 算法进行了结构优化。 结果表明,优化后的结构参数具有较高的精确度,采样过程比直接基于有限元优化减少了 90. 7%的有限元模型调用次数。

关键词: 不对称极内置式永磁同步电机, BP 神经网络, 多目标优化, 非支配排序遗传算法-Ⅱ

Abstract: Aiming at the problem of long time consuming in finite element optimization for the V-shaped interior permanent magnet synchronous motor with asymmetric poles, an optimization algorithm based on the surrogate model of BP neural network was proposed. The performance of the sampling points was calculated based on the finite element model, and the sample database was constructed. The rotor-related structural parameters were taken as the optimization variables,
and high average torque and low torque ripple were taken as the optimization objectives. Based on the sample data, the surrogate model was obtained by BP neural network, and then the NSGA-II algorithm was used for the structural optimization. The results show that the optimized structural parameters have high accuracy, and the sampling process reduces the number of finite element model calls by 90. 7% compared with the direct finite element-based optimization.

Key words: asymmetric-pole interior permanent magnet synchronous motor ( AIPMSM), BP neural network, multiobjective optimization, non-dominated sorting genetic algorithm Ⅱ( NSGA-Ⅱ)

中图分类号: