微特电机 ›› 2025, Vol. 53 ›› Issue (6): 68-.

• 生产技术 • 上一篇    下一篇

基于 SSA 优化 VME 与 SMHD 的风力发电机滚动轴承故障诊断

俞  健1,2,俞泽卫1,2,李  腾1,2,黄松泉1,2   

  1. 1. 运达能源科技集团股份有限公司,杭州 310000;2. 全省海上风电技术重点实验室,杭州 310000
  • 出版日期:2025-06-28 发布日期:2025-06-27
  • 作者简介:俞健( 1997—) ,男,本科,工程师,研究方向为振动故障诊断。

Fault Diagnosis of Wind Turbine Rolling Bearings Based on SSA Optimization of VME and SMHD

YU Jian1,2,YU Zewei1,2,LI Teng1,2,HUANG Songquan1,2   

  1. 1. Windey Energy Technology Group Co. , Ltd. ,Hangzhou 310000, China; 2. Zhejiang Key Laboratory of Offshore Wind Power Technology,Hangzhou 310000, China
  • Online:2025-06-28 Published:2025-06-27

摘要: 提出了一种风力发电机滚动轴承故障诊断方法,旨在解决在强噪声环境下故障特征难以提取的问题。该方法结合了基于奇异谱分析优化的变分模态提取与稀疏最大谐波噪声比解卷积技术,对原始振动信号进行去噪声及异常值剔除;利用奇异谱分析优化变分模态提取后对信号进行分解,以捕捉信号中的多尺度故障特征。 应用稀疏最大谐波噪声比解卷积算法对分解后的信号进行分析,提取滚动轴承的故障特征频率,并结合轴承的故障特征频率库,实现故障类型的精确诊断。 实验结果表明,该方法能够有效提取轴承故障特征频率,显著提高了故障诊断的准确性和可靠性,为风力发电机的健康监测和维护提供了有力的技术支持。

关键词: 滚动轴承, 奇异谱分析, 变分模态提取, 稀疏最大谐波噪声比解卷积, 风力发电机, 故障诊断

Abstract: This article proposed a fault diagnosis method for wind turbine rolling bearings, aiming to solve the problem of difficult feature extraction in strong noise environments. This method combined singular spectrum analysis optimized variational mode extraction and sparse maximum harmonic-to-noise ratio deconvolution techniques. De noising and outlier removal of the original vibration signal, and singular spectrum analysis was used to optimize variational mode extraction and decompose the signal to capture multi-scale fault features in the signal. The sparse maximum harmonic-to-noise ratio deconvolution algorithm was applied to analyze the decomposed signal, extract the fault characteristic frequencies of rolling bearings, and combine them with the fault characteristic frequency library of bearings to achieve accurate diagnosis of fault types. The experimental results demonstrated that this method can successfully extract the characteristic frequency of bearing faults, significantly improve the accuracy and reliability of fault diagnosis, and provide strong technical support for the health monitoring and maintenance of wind turbines.

Key words: rolling bearing, singular spectrum analysis, variational mode extraction, sparse maximum harmonic-tonoise ratio deconvolution, fault diagnosis, wind power generator

中图分类号: