微特电机 ›› 2025, Vol. 53 ›› Issue (6): 61-.

• 生产技术 • 上一篇    下一篇

基于增强去噪对抗自编码器的皮带机托辊故障诊断方法

黎匡磊,于英杰,谢井华   

  1. 国营长虹机械厂, 桂林 541003
  • 出版日期:2025-06-28 发布日期:2025-06-27
  • 作者简介:黎匡磊( 1988—) ,男,本科,工程师,研究方向为电机故障诊断。 于英杰( 1990—) ,男,本科,工程师,研究方向为电机故障诊断。 谢井华( 1982—) ,男,硕士,高级工程师,研究方向为电机故障诊断。

Fault Diagnosis Method for Belt Conveyor Idler Based on Enhanced Denoising Adversarial Autoencoder

LI Kuanglei, YU Yingjie, XIE Jinghua   

  1. State-Owned Changhong Machinery Factory, Guilin 541003, China
  • Online:2025-06-28 Published:2025-06-27

摘要: 托辊是皮带输送机中承载输送带质量并实现其稳定运行的关键旋转部件,其运行过程中常伴随复杂噪声和信号不稳定性,给故障诊断带来了较大挑战。 为了有效抑制声音信号中的噪声干扰并提升诊断精度,提出了一种基于增强去噪声对抗自编码器的托辊故障诊断框架。 该框架引入基于 Jeffrey 散度的多通道残差去噪对抗自编码器,在实现信号去噪声的同时增强特征重构能力,并通过独立设计的故障分类器对重构后的信号进行精确识别。 在不同噪声水平下对所提方法进行了评估。 实验结果表明,该方法在两种噪声环境下均表现出优异的诊断性能,平均识别精度超过 99%,显著优于现有主流深度学习模型。 所构建的残差结构在抗噪性能方面相较传统残差网络亦表现出更强的鲁棒性。

关键词: 皮带机托辊故障诊断, 噪声干扰, Jeffrey 散度, 多通道残差去噪对抗自编码器

Abstract: The idler is a critical rotating component of belt conveyors, responsible for bearing the weight of the conveyor belt and ensuring its stable operation. Its operation is often accompanied by complex noise and signal instability, posing significant challenges for fault diagnosis. To effectively suppress noise interference in acoustic signals and improve diagnostic accuracy, this proposes an idler fault diagnosis framework based on an enhanced denoising adversarial autoencoder. The framework incorporates a multi-channel residual denoising adversarial autoencoder based on Jeffrey divergence, which not only denoises the signals but also enhances feature reconstruction capability. An independently designed fault classifier is then employed to accurately identify the reconstructed signals. The proposed method is evaluated under varying noise levels. Experimental results demonstrate that the method achieves excellent diagnostic performance in both noise environments, with an average recognition accuracy exceeding 99%, significantly outperforming existing mainstream deep learning models. The constructed residual structure exhibits stronger robustness against noise compared to traditional residual networks.

Key words: belt conveyor idler fault diagnosis, noise interference, Jeffrey divergence, multi-channel residual denoising adversarial autoencoder

中图分类号: