微特电机 ›› 2025, Vol. 53 ›› Issue (5): 65-70.

• 机器人技术 • 上一篇    下一篇

四轮机器人差速控制问题研究

吕文艳   

  1. 乌鲁木齐职业大学,乌鲁木齐 830001
  • 收稿日期:2024-12-10 出版日期:2025-05-28 发布日期:2025-05-28
  • 作者简介:吕文艳( 1972—) ,女,汉族,硕士研究生, 副教授, 研究方向为机电工程。

Research on Differential Control of Four-Wheel Robot

LÜ Wenyan   

  1. The Vocational University of Urumqi,Urumqi 830001,China
  • Received:2024-12-10 Online:2025-05-28 Published:2025-05-28

摘要: 针对传统四轮机器人差速控制效果不佳的问题,提出一种基于麻雀搜索算法( SSA) 优化模糊 PID 控制
器的机器人差速控制方法。 构建四轮机器人差速控制运动模型,采用 SSA 对模糊 PID 控制器的比例、积分和微分三
个增益参数进行有效优化,将 SSA-模糊 PID 控制器输入至四轮机器人运动模型中进行差速控制。 仿真结果表明,相
较于常规 PID 控制器、模糊 PID 控制器、BP-NSGA-Ⅱ控制器和 PSO-PID 控制器,该控制器可对四轮机器人运行速度
进行迅速控制,修正偏差的波动较小,其在 3. 1 s 时的偏差取值为 0。 结果验证了该模型在四轮机器人差速控制中的
响应速度较快、波动少,可使四轮机器人的行驶过程更具稳定性。

关键词: 四轮机器人, 差速控制, 麻雀搜索算法, 模糊 PID 控制, 运动模型

Abstract: Based on the problem of poor differential control effect of traditional four-wheel robot, a robot differential
control method for optimizing fuzzy PID controller based on sparrow search algorithm ( SSA) was proposed. The four-wheel
robot differential control motion model was constructed. The SSA algorithm was used to effectively optimize the three gain
parameters of the fuzzy PID controller. The SSA-fuzzy PID controller is input to the four-wheel robot motion model for
differential control. The simulation results showed that compared with the conventional PID controller, fuzzy PID controller,
BP-NSGA-controller and PSO-PID controller, the controller can quickly control the running speed of the four-wheel robot
quickly, the correction deviation fluctuation was small, and the deviation value was 0 at 3. 1 s. It showed that the response
speed and less fluctuation in the differential control of four-wheel robot are faster, which can make the driving process of
four-wheel robot more stable.

Key words: four-wheel robot, differential control, sparrow search algorithm( SSA), fuzzy PID control, motion model

中图分类号: