微特电机 ›› 2025, Vol. 53 ›› Issue (4): 78-82.

• 读者园地 • 上一篇    

基于知识图谱和 GPT 模型的风电机组行星齿轮箱故障诊断


  

  1. 大唐凉山新能源有限公司,成都 610000
  • 收稿日期:2025-01-07 出版日期:2025-04-28 发布日期:2025-04-28
  • 作者简介:赵岩( 1973—) ,男,高级工程师,主要研究方向为水电生产技术、新能源风电生产技术、光伏发电技术、电力系统理论等。

Fault Diagnosis of Wind Turbine Planetary Gearbox Based on Knowledge Graph and GPT Model

i   

  1. Datang Liangshan New Energy Co. , Ltd. , Chengdu 610000, China
  • Received:2025-01-07 Online:2025-04-28 Published:2025-04-28

摘要: 在风电机组行星齿轮箱故障诊断过程中,由于故障特征与故障状态之间的关系不唯一,直接利用行星
齿轮箱输出信号进行故障诊断的效果无法保障。 提出基于知识图谱和 GPT 模型的风电机组行星齿轮箱故障诊断研
究方法,利用 MOEA / D 算法将故障特征选择问题分解为单目标子问题,结合差分进化策略,选定与故障关联性最大
的特征;将选定的特征作为 GPT 模型的输入参量,在小样本学习机制下,输出风电机组行星齿轮箱故障知识图谱;根
据行星齿轮箱运行数据在知识图谱中的映射结果,确定风电机组行星齿轮箱的具体故障状态。 测试结果表明,该方
法能够有效诊断不同故障状态,诊断精度达到 0. 98,诊断效果能显著提升。

Abstract: in the process of diagnosing faults in the planetary gearbox of wind turbines, the relationship between fault
characteristics and fault states is not unique, the effect of fault diagnosis directly using the output signal of planetary gearbox
cannot be guaranteed. A research method on fault diagnosis of wind turbine planetary gearbox based on knowledge graph
and GPT model was proposed. Using MOEA / D algorithm to decompose the fault feature selection problem into single
objective sub problems, combined with differential evolution strategy, select the feature with the highest correlation with the
fault. Using the selected features as input parameters for the GPT model, output a knowledge graph of planetary gearbox
faults in wind turbines under a small sample learning mechanism. Based on the mapping results of the planetary gearbox
operation data in the knowledge graph, determine the specific fault state of the wind turbine planetary gearbox. The test
results demonstrated that the method can effectively diagnosed various fault states, achieved a diagnostic accuracy of 0. 98,
and significantly improved the diagnostic performance.