微特电机 ›› 2025, Vol. 53 ›› Issue (4): 61-65.

• 驱动控制 • 上一篇    下一篇

电梯曳引机轴承故障多分量多尺度诊断技术


  

  1. 安徽省特种设备检测院,合肥 230051
  • 收稿日期:2025-02-08 出版日期:2025-04-28 发布日期:2025-04-28
  • 作者简介:刘畅( 1988—) ,硕士研究生,高级工程师, 主要研究方向为电梯系统安全。 许林( 1971—) ,本科,正高级工程师,主要研究方向为特种设备安全。

Multi Component and Multi scale Diagnostic Technology for Elevator Traction Machine Bearing Faults

  1. Anhui Special Equipment of Inspection Institute,Hefei 230051,China
  • Received:2025-02-08 Online:2025-04-28 Published:2025-04-28

摘要: 研究电梯曳引机轴承故障多分量多尺度诊断技术,通过充分细化轴承振动信号,挖掘信号不同尺度层次上的特征,获取更加全面可靠的轴承故障诊断结果。 采用基于局部均值分解( LMD) 的多分量分析技术,分解电梯
曳引机轴承振动信号,获取多个乘积函数( PF) 分量,经互相关系数完成 PF 分量筛选后,进行 PF 分量重构;采用基
于多尺度排列熵( MPE) 的多尺度分析方法,计算各个重构 PF 分量在不同尺度下的排列熵,将其作为电梯曳引机轴
承故障诊断的特征,组建特征向量,输入到孪生支持向量机构建的故障诊断模型中,获取电梯曳引机轴承故障诊断
结果。 实验结果表明,该技术能够有效分解不同故障状态下的振动信号,获取 PF 分量并完成其筛选,可以精准诊断
不同电梯曳引机轴承的故障类型。

关键词: 电梯曳引机, 轴承故障, 多分量, 多尺度排列熵, 孪生支持向量机

Abstract: This study investigated the multi-component and multi scale diagnostic technology for elevator traction
machine bearing faults. By fully refining the bearing vibration signal and mining the characteristics at different scales of the
signal, more comprehensive and reliable bearing fault diagnosis results could be obtained. Using the multi-component
analysis technique based on local mean decomposition ( LMD) , the vibration signal of the elevator traction machine bearing
was decomposed to obtain multiple product function ( PF ) components. After completing the PF component screening
through cross-correlation coefficients, the PF component was reconstructed. Using a multi scale analysis method based on
multiscale permutation entropy ( MPE) , the permutation entropy of each reconstructed PF component at different scales was
calculated, which was used as a feature for elevator traction machine bearing fault diagnosis. A feature vector was
constructed and input into the fault diagnosis model built by the twin support vector mechanism to obtain the fault diagnosis
results of elevator traction machine bearings. The experimental results showed that this technology can effectively decompose
vibration signals under different fault states to obtain PF components and complete their screening. Accurate diagnosis of
different types of elevator traction machine bearing faults could be obtained.

Key words: elevator traction machine, bearing malfunction, multi-component, multiscale permutation entropy( MPE), twin support vector machine ( TSVM)