微特电机 ›› 2025, Vol. 53 ›› Issue (12): 7-13.

• 理论研究 • 上一篇    下一篇

基于 SNN-TD3 算法的永磁同步电机控制

陈  功1,杨昕宇2,刘彦臣2,张洲旗1   

  1. 1. 中北大学 航空宇航学院,太原 030051; 2. 中北大学 机电工程学院,太原 030051
  • 出版日期:2025-12-28 发布日期:2025-12-28
  • 作者简介:陈功( 2001—) ,男,硕士研究生,研究方向为强化学习与智能控制。 杨昕宇( 1999—) , 男, 硕士研究生, 研究方向为系统建模与仿真。 刘彦臣( 1974—) , 男, 工学博士, 副教授, 研究方向为机电一体化。 张洲旗( 2001—) , 男, 硕士研究生, 研究方向为短波红外位姿检测。

Control of PMSM Based on the SNN-TD3 Algorithm

CHEN Gong1,YANG Xinyu2,LIU Yanchen2,ZHANG Zhouqi1   

  1. 1. School of Aerospace Engineering,North University of China,Taiyuan 030051,China;
    2. School of Mechanical and Electrical Engineering,North University of China,Taiyuan 030051,China
  • Online:2025-12-28 Published:2025-12-28

摘要: 为提高永磁同步电机 PMSM( permanent magnet synchronous motor,PMSM) 在多工况下的控制性能,解决传统 PI 控制器参数固定、适应性差的问题,本文创新性地提出一种基于脉冲神经网络( spiking neural network,SNN)与双延迟确定性梯度算法( twin delayed deep deterministic policy gradient algorithm,TD3) 融合的智能控制方法( SNNTD3) 。 该方法以 SNN 作为 Actor 网络,替代传统矢量控制中的转速环与 q 轴电流环 PI 控制器,充分利用 SNN 的事件驱动特性与时间编码能力,增强系统的动态响应能力与噪声鲁棒性。 通过 MATLAB / Simulink 与 Python 联合仿真,在空载起动、负载扰动、正弦跟踪和复合阶跃等多种工况下进行仿真实验验证。 结果表明,SNN-TD3 在无超调、快速响应和跟踪精度方面较传统 PI 及标准 TD3 控制,展现出更高的综合控制性能与良好的工况适应性。

关键词: 永磁同步电机, 脉冲神经网络, 强化学习, 双延迟确定性梯度算法

Abstract: To enhance the control performance of permanent magnet synchronous motor ( PMSM ) under multiple operating conditions and address the limitations of conventional PI controllers, such as fixed parameters and poor adaptability,this paper innovatively proposes an intelligent control method ( SNN-TD3 ) that integrates spiking neural networks ( SNN) with the twin delayed deep deterministic policy gradient algorithm ( TD3) . In this method,the SNN serves as the Actor network,replacing the PI controllers in the speed loop and q-axis current loop of traditional vector control. By leveraging the event-driven characteristics and temporal encoding capabilities of SNNs, the dynamic response and noise robustness of the system are significantly improved. Through co-simulation in MATLAB / Simulink and Python, simulation experiments are conducted under various operating conditions, including no-load startup, load disturbance, sinusoidal tracking,and composite step changes. The results demonstrate that the proposed SNN-TD3 method outperforms traditional PI and standard TD3 control in terms of zero overshoot,fast response,and tracking accuracy,exhibiting superior comprehensive control performance and strong adaptability to diverse operating conditions.

Key words: permanent magnet synchronous motor,spiking neural network, reinforcement learning, twin delayed deep deterministic policy gradient algorithm