微特电机 ›› 2025, Vol. 53 ›› Issue (11): 73-77.

• 生产技术 • 上一篇    下一篇

基于 CNN-BiGRU-Attention 的轴承健康状态退化趋势建模与预测方法

李少帅1,2,蔡海洋1,2,董苏远1,2,李  腾1,2,黄松泉1,2,吴博阳1,2
  

  1. 1 运达能源科技集团股份有限公司,杭州 310000; 2 全省海上风电技术重点实验室,杭州 310000
  • 出版日期:2025-11-28 发布日期:2025-11-28

Modeling and Prediction Method for Bearing Health Degradation Trend Based on CNN-BIGRU-Attention

LI Shaoshuai1,2,CAI Haiyang1,2,DONG Suyuan1,2,LI Teng1,2,HUANG Songquan1,2,WU Boyang1,2#br#   

  1.  1. Windey Energy Technology Group Co.,Ltd.,Hangzhou 310000,China;
    2. Zhejiang Key Laboratory of Offshore Wind Power Technology,Hangzhou 310000,China
  • Online:2025-11-28 Published:2025-11-28

摘要: 针对轴承健康状态退化趋势预测精度不足的问题,提出一种融合卷积神经网络、双向门控循环单元与注意力机制的深度学习模型。 该方法利用卷积神经网络提取振动信号的局部时空特征,通过双向门控循环单元捕捉时序依赖关系,并借助注意力机制动态聚焦关键退化阶段,实现对轴承健康指标的高精度趋势预测。 实验采用西安交通大学 XJTU-SY 轴承全寿命数据集,输入为水平方向加速度信号及 13 种时频域特征。 结果表明,所提模型的平均绝对误差为 0. 015,均方根误差为 0. 020,决定系数达到 0. 983,性能显著优于双向门控循环单元、双向门控循环单元-注意力机制以及 Transformer-门控循环单元模型,可为旋转机械的预测性维护提供可靠的健康状态评估手段。

关键词: 轴承, 健康状态退化趋势, 卷积神经网络, 双向门控循环单元, 注意力机制

Abstract: To better capture the subtle evolution of bearing health degradation, this study introduces a hybrid deeplearning architecture that synergizes convolutional feature extraction, bidirectional gated-recurrent dynamics, and an attention-guided refinement stage. The convolutional neural network ( CNN) is employed to extract local spatiotemporal features from vibration signals, bidirectional gated recurrent unit ( BiGRU ) captures bidirectional long-term temporal dependencies,and attention dynamically highlights critical degradation stages,enabling high-precision trend prediction of the bearing health indicator. Experiments are conducted on the XJTU-SY bearing full-life dataset,using horizontal acceleration
signals together with 13 time-frequency domain features as inputs. The CNN-BiGRU-Attention model achieves a mean absolute error ( EMA) of 0. 015, a root mean square error ( ERMS) of 0. 020, and a coefficient of determination ( R2) of 0. 983,outperforming BiGRU, BiGRU-Attention, and transformer-gated recurrent unit baselines significantly. The proposed approach offers a reliable health assessment tool for predictive maintenance of rotating machinery.