微特电机 ›› 2025, Vol. 53 ›› Issue (11): 78-83.

• 生产技术 • 上一篇    下一篇

基于多尺度深度自编码器的电机振动信号自适应特征提取与机械故障识别

甘  泉1,任曦霖2   

  1. 1. 国家能源集团新能源技术研究院有限公司,北京 102211; 2. 西安电子科技大学,西安 710071
  • 出版日期:2025-11-28 发布日期:2025-11-28

Adaptive Feature Extraction and Mechanical Fault Identification of Motor Vibration Signals Based on Multi-Scale Deep Autoencoders

GAN Quan1,REN Xilin2   

  1. 1. National Energy Group New Energy Technology Research Institute Co.,Ltd.,Beijing 102211,China;
    2. Xidian University,Xi’ an 710071,China
  • Online:2025-11-28 Published:2025-11-28

摘要: 针对电机振动信号中微弱故障特征提取困难与智能识别准确性不高的问题,提出一种多尺度深度自编码器模型,实现对振动信号的自适应特征压缩与鲁棒判别学习。 该模型在编码器结构中引入多感受野卷积通道以捕捉不同时间尺度下的局部动态特征,在潜在空间嵌入稀疏与判别约束以增强故障敏感性;在解码器路径中融合注意力机制,提升重构精度与局部异常响应能力。 仿真实验表明,所提模型的平均准确率达 97. 86%,F1 值为 97. 42%,相较于传统时频方法与主流深度模型提升 3. 47% ~ 14. 55%;在不同噪声水平与输入策略变化下展现出优越的鲁棒性与稳定性,验证了其在工业振动故障智能诊断场景中的实用潜力与工程价值。

关键词: 电机振动信号, 特征提取, 深度自编码器, 多尺度结构, 机械故障识别

Abstract: To address the challenge of extracting weak fault features and achieving high recognition accuracy in motor vibration signals,a multi-scale deep autoencoder model for adaptive feature compression and robust discriminative learning is proposed. The encoder incorporates parallel convolutional channels with varying receptive fields to capture local dynamics across different time scales. Meanwhile,sparsity and discriminative constraints are embedded in the latent space to enhance fault sensitivity. The decoder integrates an attention mechanism to improve reconstruction accuracy and focus on subtle anomalies. Simulation experiments show that the proposed model achieves an average accuracy of 97. 86% and an F1-score
of 97. 42%,representing an improvement of 3. 47% ~ 14. 55% over traditional time-frequency methods and mainstream deep models. It also maintains superior robustness and stability under varying noise levels and sampling strategies,validating its practical potential and engineering applicability in intelligent fault diagnosis of industrial vibration systems.