微特电机 ›› 2024, Vol. 52 ›› Issue (5): 65-69.

• 驱动控制 • 上一篇    下一篇

基于二阶近似 EKF 的永磁同步电机无传感器控制策略

鲁  飞1, 张可可1, 龚  淼1,李宾皑2   

  1. 1. 华东送变电工程有限公司,上海 201803;  2. 国网上海市电力公司,上海 200122
  • 收稿日期:2023-09-08 出版日期:2024-05-28 发布日期:2024-06-13
  • 基金资助:
    国网上海电力公司科技项目( 520900220016)

Sensorless Control Strategy for Permanent Magnet Synchronous Motor Based on Second-Order Approximate EKF

LU Fei1, ZHANG Keke1, GONG Miao1, LI Bin’ ai2   

  1. 1. East China Power Transmission and Transformation Engineering Co. ,Ltd. ,Shanghai 201803,China;
    2. State Grid Shanghai Electric Power Company,Shanghai 200122, China
  • Received:2023-09-08 Online:2024-05-28 Published:2024-06-13

摘要: 在永磁同步电机( PMSM) 无感控制中,采用扩展卡尔曼滤波( EKF) 来估计 PMSM 的转子位置和转速,采用一阶 Taylor 展开对系统状态模型进行线性化,省略二阶及以上项会带来较大的建模误差。 针对该问题,提出了基于二阶近似的 EKF 方法,保留二阶偏微分项,提高了系统模型精度。 仿真实验证明,该方法可以获得比传统方法更精确的估计结果。

关键词: 永磁同步电机, 参数估计, 无传感器控制, 二阶扩展卡尔曼滤波

Abstract: The extended Kalman filter ( EKF ) is typically employed in sensorless control of permanent magnet synchronous motors ( PMSM) to estimate the rotor position and speed. The system state model was often linearized using the first-order Taylor expansion. Omitting second-order or higher terms during linearization could result in significant modeling errors. In response to the issue, an EKF method based on second-order approximation was proposed, which preserved second-order partial derivatived and improved the accuracy of the system model. Simulation experiments showed that the method could obtain more accurate estimation results than traditional methods.

Key words: permanent magnet synchronous motor ( PMSM), parameter estimation, sensorless control, second-order extended Kalman filtering( EKF)

中图分类号: