微特电机 ›› 2024, Vol. 52 ›› Issue (4): 65-71.

• 驱动控制 • 上一篇    下一篇

基于粒子群算法的开关磁阻电机控制系统研究

杨  辉1,李昕涛2,王茹愿1,张  伟1   

  1. 1. 太原科技大学 电子信息工程学院,太原 030024;  2. 太原科技大学 重型机械教育部工程研究中心,太原 030024
  • 收稿日期:2023-06-13 出版日期:2024-04-28 发布日期:2024-04-28

Research on Switched Reluctance Motor Control System Based on Particle Swarm Optimization Algorithm

YANG Hui 1 , LI Xintao 2 , WANG Ruyuan 1 , ZHANG Wei1   

  1. 1. School of Electronic Information Engineering, Taiyuan University of Science and Technology,Taiyuan 030024, China;  2. Engineering Research Center of Heavy Machinery, Ministry of Education,Taiyuan University of Science and Technology,Taiyuan 030024, China
  • Received:2023-06-13 Online:2024-04-28 Published:2024-04-28

摘要: 针对开关磁阻电机本身所具有的强非线性,转矩脉动大、调速性能待改进等问题,采用了一种基于粒子群优化模糊 PI 控制并结合柔性神经网络的控制方法,将模糊控制理论与 PI 控制相结合,并通过粒子群算法进行优化。 进行了速度外环为无优化模糊 PI 控制、传统 PID 控制以及粒子群优化模糊 PI 控制三种仿真实验,三种仿真实验均采用柔性神经网络作为转矩内环。 对比仿真结果发现, 粒子群优化模糊 PI 控制在额定转速为 150 r / min、800 r / min、1 500 r / min 三种情况下的转矩脉动最小,提高了系统的鲁棒性,对比实验表明,粒子群优化的模糊 PI 控制作为速度外环,柔性神经网络作用于转矩内环的控制方法性能优良,适用于开关磁阻电机的转矩脉动抑制。

关键词: 开关磁阻电机, 粒子群优化算法, 模糊 PI 控制, 柔性神经网络控制

Abstract: To solve the problems of switched reluctance motor, such as strong nonlinearity, large torque pulsation, speed regulation performance to be improved, a fuzzy PI control method based on particle swarm optimization ( PSO) and flexible neural network ( FNN) was adopted. The fuzzy control theory and PI control were combined and optimized by particle swarm optimization algorithm. Three kinds of simulation experiments were carried out: non-optimized fuzzy PI control for the outer speed loop, traditional PID control and particle swarm optimization fuzzy PI control. All the three simulation experiments used flexible neural network ( FNN) as the inner torque loop. Compared with the simulation results, it was found that the particle swarm optimization fuzzy PI control had the smallest torque ripple when the rated speed was 150 r / min, 800 r / min and 1 500 r / min, which improved the robustness of the system. The experimental results show that
the fuzzy PI control with particle swarm optimization as the speed outer loop and the FNN acting on the torque inner loop have good performance, which is suitable for the torque ripple suppression of switched reluctance motor.

Key words: switched reluctance motor( SRM), particle swarm optimization( PSO) algorithm, fuzzy PI control, flexible neural network( FNN) control

中图分类号: