微特电机 ›› 2023, Vol. 51 ›› Issue (2): 20-25.

• 设计分析 • 上一篇    下一篇

改进GAN结合SDAE的传动系统主轴承故障诊断

陈其   

  1. 商洛职业技术学院,商洛 726099
  • 收稿日期:2022-09-19 出版日期:2023-02-28 发布日期:2023-03-01
  • 作者简介:陈其(1990—),男,硕士,讲师,研究方向为机电一体化。
  • 基金资助:
    商洛职业技术学院2019年度重大课题项目(JXKT2019006)

Fault Diagnosis of Main Bearing of Transmission System Based on ACGAN-SDAE

CHEN Qi   

  1. Shangluo Vocational and Technical College,Shangluo 726099,China
  • Received:2022-09-19 Online:2023-02-28 Published:2023-03-01

摘要: 针对传动系统主轴承故障诊断准确率低的问题,结合辅助分类器生成对抗网络(ACGAN)与堆叠降噪自编码器(SDAE),提出一种ACGAN-SDAE的故障诊断方法。通过ACGAN生成高质量的新样本,以扩充传动系统主轴承故障样本量的大小,并利用SDAE从含噪样本中提取鲁棒性特征,提高了故障诊断的准确率。仿真结果表明,ACGAN-SDAE故障诊断方法可有效诊断不同故障样本量下的传动系统主轴承故障,具有良好的域自适应性和抗噪性能,平均故障诊断准确率达到90%以上,相较于SDAE、SVM、MLP常用故障诊断方法,具有一定的优越性。

关键词: 传动系统, 主轴承故障, 故障诊断, 辅助分类器生成对抗网络, 堆叠降噪自编码器

Abstract: In order to solve the problem of low accuracy of fault diagnosis for main bearing of transmission system, anACGAN-SDAE fault diagnosis model was proposed, which combined auxiliary classifier generating adversarial networks (ACGAN) and stackeddenoising auto encoder (SDAE). ACGAN was used to generate high-quality new samples to expand the sample size of the main bearing fault of the transmission system, and SDAE was used to extract robust features from noisy samples to improve the accuracy of fault diagnosis. The simulation results show that the ACGAN-SDAE fault diagnosis model can effectively diagnose the faults of the main bearing of the transmission system under different fault sample sizes, and has good domain self adaptability and anti-noise performance. The average fault diagnosis accuracy is more than 90%. Compared with the common fault diagnosis models of SDAE, SVM and MLP, ACGAN-SDAE has certain advantages.

Key words: drive system, main bearing fault, fault diagnosis, auxiliary classifier generative adversarial networks(ACGAN), stacked denoising auto encoder(SDAE)

中图分类号: