微特电机 ›› 2019, Vol. 47 ›› Issue (10): 42-45.

• • 上一篇    下一篇

粒子群优化融合随机森林的电机故障诊断方法

王训训,陈天,刘正杰,俞啸,丁恩杰   

  1. 中国矿业大学 物联网(感知矿山)研究中心, 徐州 221000
  • 收稿日期:2019-04-09 出版日期:2019-10-28 发布日期:2019-10-22

Motor Fault Diagnosis Method Based on Particle Swarm Optimization and Random Forest

WANG Xun-xun, CHEN Tian, LIU Zheng-jie, YU Xiao, DING En-jie   

  1. CUMT-IoT Perception Mine Research Center,China University of Mining and Technology,Xuzhou 221000,China
  • Received:2019-04-09 Online:2019-10-28 Published:2019-10-22

摘要: 针对三相电机实际识别准确率较低的问题,研究了一种智能的电机故障诊断方法。以三相电机振动数据为研究对象,结合粒子群优化算法和随机森林算法,建立了优化的随机森林算法模型对电机故障状态进行模式识别。提出一种融合K均值聚类算法和随机森林重要性选择方法的敏感特征提取算法,用以对故障敏感特征进行提取。对电机的八种运行状态进行实验验证,实验结果显示该方法能准确和高效地识别出电机故障状态。

关键词: 随机森林, 电机, 故障诊断, 特征选择, 调整兰德指数, 粒子群优化

Abstract: Aiming at the problem of low recognition accuracy of three-phase motor,an intelligent fault diagnosis method was studied.Taking the three-phase motor vibration data as the research object,combining particle swarm optimization algorithm with random forest algorithm,an optimized random forest algorithm model was established to identify the motor fault state.A fusion K-means clustering algorithm and random forest algorithm were combined, a sensitive feature extraction algorithm was proposed to extract the fault-sensitive features.The eight operating states of the motor are experimentally verified.The experimental results show that the method can identify the motor fault state accurately and efficiently .

中图分类号: