微特电机 ›› 2020, Vol. 48 ›› Issue (4): 39-42.

• 设计分析 • 上一篇    下一篇

基于深度学习的发电机整流器诊断系统研究

刘力宇, 崔江   

  1. 南京航空航天大学 自动化学院,南京 211106
  • 收稿日期:2012-09-04 出版日期:2020-04-28 发布日期:2020-04-24
  • 作者简介:刘力宇(1992--),硕士研究生,研究方向为发电机故障诊断与健康监测.
  • 基金资助:
    中央高校基本科研业务费项目(NS2017019)资助

Research and Realization of Generator Rectifier Fault Diagnosis System Based on Deep Learning Theory

LIU Li-yu, CUI Jiang   

  1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2012-09-04 Online:2020-04-28 Published:2020-04-24

摘要: 基于深度置信网络技术,使用C++编程语言设计了发电机旋转整流器故障诊断平台,实现了对故障信号特征的提取与分类.选择三级式发电机进行了实验验证,结果表明,该设计具有良好的故障诊断效果.

关键词: 发电机, 故障诊断, C++编程语言, 旋转整流器, 深度学习

Abstract: Based on the deep belief networks technology, a fault diagnosis platform for generator rectifier was designed by using C++ language, realizing feature extraction and classification of fault signals. The experiment was verified with a three-stage generator. The actual results show that the design has a good fault diagnosis effect.

Key words: generator, fault diagnosis, C++ programing language, rotating rectifier, deep learning

中图分类号: