微特电机 ›› 2018, Vol. 46 ›› Issue (12): 30-33.doi: 1004-7018(2018)12-0030-04

• 设计分析 • 上一篇    下一篇

基于MUSIC与SVRM的感应电动机转子断条故障检测

刘志坚,李德路,吴玮   

  1. 江苏建筑职业技术学院,徐州 221116
  • 收稿日期:2018-06-08 出版日期:2018-12-28 发布日期:2018-12-28
  • 作者简介:刘志坚(1973—) ,男,硕士,副教授,主要研究方向为楼宇智能化工程技术、电机故障诊断。
  • 基金资助:
    江苏建筑职业技术学院科研项目(JYA317-11)

Fault Detection of Broken Rotor Bar in Induction Motors Based on MUSIC and SVRM

LIU Zhi-jian, LI De-lu, WU Wei   

  1. Jiangsu Vocational Institute of Architectural Technology,Xuzhou 221116,China
  • Received:2018-06-08 Online:2018-12-28 Published:2018-12-28

摘要:

研究了一种基于多重信号分类(multiple signal classification, MUSIC)与支持向量回归机(support vector regression machine, SVRM)的感应电动机转子断条故障检测方法,能够快速且准确地检测感应电动机转子断条特征分量的幅值与频率。MUSIC具有较好的检测精度和较高的频率分辨力,从而能快速有效地检测边频与基频分量频率的大小,对短时采样信号也同样适用,但其无法获得各分量的幅值与相位。基于MUSIC的这一缺陷,采用SVRM来检测各分量的幅值和相位,并进行了性能分析。通过Y132M-4型感应电机进行实验研究,实验结果证明了该方法的正确性和优越性。

关键词: 感应电动机, 转子断条, 多重信号分类, 支持向量回归机

Abstract:

A novel technique which combines multiple signal classification(MUSIC) and support vector regression machine (SVRM) was studied, this technique can improve the accuracy and rapidity of tracking the broken rotor bar characteristic frequencies and amplitudes in induction motors. MUSIC has better detection precision and higher frequency discernment, and it can track the frequencies of sidebands as well as the fundamental frequency component with a very high accuracy even with a short-time sample. MUSIC is a powerful tool extracting meaningful frequencies from the signal, but it is not able to estimate the amplitudes and phase angles of those components. As a solution for this problem, SVRM was introduced to determine the amplitudes and phase angles of the signal and the results have a superior performance. A Y132M-4-typed induction motor was used to conduct an experiment, experimental results illustrate the validness and superiority of the proposed method.

Key words: induction motor, broken rotor bar, multiple signal classification (MUSIC), support vector regression machine (SVRM)

中图分类号: