微特电机 ›› 2025, Vol. 53 ›› Issue (6): 56-.

• 机器人技术 • 上一篇    下一篇

七自由度装卸货机器人动力学参数辨识方法研究

蔡  宇1,贾  杰2   

  1.  1. 普天物流技术有限公司,北京 100080;  2. 河北省烟草公司张家口市公司,张家口 075000
  • 出版日期:2025-06-28 发布日期:2025-06-27
  • 作者简介:蔡宇( 1971—) ,男,中级工程师,研究方向为物流自动化。 贾杰( 1983—) ,男,中级工程师,研究领域为物流自动化、 机械设计。

Research on Identification Method of Dynamic Parameters for A 7 -Degree-of-Freedom Loading and Unloading Robot

CAI Yu1,JIA Jie2#br#   

  1. 1. Potevio Logistics Technology Co. , Ltd. ,Beijing 100080,China;
    2. Zhangjiakou Branch of Hebei Tobacco Company,Zhangjiakou 075000,China
  • Online:2025-06-28 Published:2025-06-27

摘要: 七自由度装卸货机器人作为一种高灵活性的特种机器人,由于机械结构复杂且需满足高精度轨迹跟踪要求,必须对其动力学特性进行精确建模。 基于德纳维特-哈滕贝格( MDH) 方法建立装卸货机器人的运动学模型,通过牛顿-欧拉方法( Newton-Euler) 迭代法构建刚体动力学方程,推导关节力矩的符号表达式;分析动力学方程的线性化形式与最小惯性参数集;提出采用有限项傅里叶级数作为激励轨迹;并设计优化目标函数;利用 fmincon 函数求解最优轨迹参数;将传统线性摩擦模型改进为 sigmoid 函数模型,以消除关节换向时的力矩跳变和抖振问题。 实验表明,改进后的摩擦力模型显著降低了理论力矩与实际力矩的跟踪误差,优化了关节换向控制性能。 该方法为装卸货机器人的高精度运动控制与能耗优化提供了理论支撑。

关键词: 七自由度装卸货机器人, 参数辨识, 改进摩擦力模型, 优化算法, 激励轨迹

Abstract: The seven-degree-of-freedom ( 7DOF) loading and unloading robot, as a highly flexible special robot is widely used in logistics handling, warehousing automation and other fields. Due to its complex mechanical structure and the requirement for high-precision trajectory tracking, it is essential to model its dynamic characteristics accurately. This establishes the kinematic model of the loading and unloading robot based on the MDH method, constructs the rigid body dynamics equations using the Newton-Euler iterative method, and derives the symbolic expression for joint torques. It analyzes the linearized form of the dynamics equations and the minimum inertia parameter set, proposes the use of finite Fourier series as the excitation trajectory, and designs an optimization objective function. The fmincon function is used to solve for the optimal trajectory parameters. The traditional linear friction model is improved to a sigmoid function model to eliminate the torque jump and chattering issues during joint reversal. Experiments show that the improved friction model significantly reduces the tracking error between theoretical and actual torques, optimizing the joint reversal control performance. This method provides theoretical support for high-precision motion control and energy optimization of loading and unloading robots.

Key words: seven-degree-of-freedom loading and unloading robot, parameter identification, improved friction model, optimization algorithm, excitation trajectory

中图分类号: