微特电机 ›› 2025, Vol. 53 ›› Issue (7): 51-56.

• 驱动控制 • 上一篇    下一篇

基于近端策略优化的永磁同步电机前馈补偿控制

彭于扬,罗 响   

  1. 上海交通大学 电气工程系,上海 200240
  • 出版日期:2025-07-28 发布日期:2025-08-08
  • 作者简介:彭于扬( 1999—) ,男,硕士研究生,研究方向为电机控制。

Proximal Policy Optimization-Based Feedforward Compensation Control for Permanent Magnet Synchronous Motor

PENG Yuyang,LUO Xiang   

  1. Department of Electrical Engineering,Shanghai Jiaotong University,Shanghai 200240,China
  • Online:2025-07-28 Published:2025-08-08

摘要: 针对永磁同步电机不平衡负载带来的转速波动问题,提出了一种基于强化学习的近端策略优化前馈补偿算法。 分析了永磁同步电机转速波动成因及抑制原理,利用 PPO 算法无需对系统精确建模且能通过自适应优化训练实现低稳态误差的优势,构建了基于 PPO 的电机前馈补偿控制框架,并将批处理归一化引入对广义优势估计的处理从而增强 PPO 算法的性能。 仿真与实验结果表明,所提出的 PPO 前馈控制算法能够有效的抑制电机在不平衡负载工况下的转速波动。

关键词: 永磁同步电机, 强化学习, 近端策略优化, 转速波动

Abstract: A reinforcement learning-based proximal policy optimization ( PPO) feedforward compensation algorithm is proposed to address the speed fluctuation issue caused by unbalanced loads in permanent magnet synchronous motors. The causes and suppression principles of speed fluctuations in permanent magnet synchronous motors are analyzed. Taking advantage of the PPO algorithm’ s ability to achieve low steady-state error without the need for precise system modeling and its adaptive optimization training, a motor feedforward compensation control framework based on PPO is developed. Batch normalization is introduced to enhance the performance of the PPO algorithm by handling the general advantage estimation. Simulation and experimental results demonstrate that the proposed PPO feedforward control algorithm effectively suppresses speed fluctuations in the presence of unbalanced load conditions.

Key words: permanent magnet synchronous motor, reinforcement learning, proximal policy optimization, speed fluctuation

中图分类号: