微特电机 ›› 2025, Vol. 53 ›› Issue (5): 61-64.

• 驱动控制 • 上一篇    下一篇

基于 SCADA 数据和 XGBoost 的风电机组发电机故障诊断方法

施德华, 韩增涛, 孟井煜枫, 吴博阳, 汪浩然, 蔡逸波   

  1. 运达能源科技集团股份有限公司, 杭州 310000
  • 收稿日期:2024-08-30 出版日期:2025-05-28 发布日期:2025-05-28
  • 作者简介:施德华( 1997—) ,男,本科,助理工程师,研究方向为数据融合。 吴博阳( 1992—) ,通信作者,男, 硕士,研究方向为振动故障诊断。

Fault Diagnosis Method for Wind Turbine Generator Based on SCADA Data and XGBoost

SHI Dehua, HAN Zengtao, MENG Jingyufeng, WU Boyang, WANG Haoran, CAI Yibo   

  1.  Windey Energy Technology Group Co., Ltd.,Hangzhou 310000, China
  • Received:2024-08-30 Online:2025-05-28 Published:2025-05-28

摘要: 风力发电机组是风电系统的核心组件。 发电机的效率和稳定性直接影响风力发电机组的整体发电能
力和可靠性,对风电场的经济效益至关重要。 提出了一种基于 SCADA 数据和 XGBoost 算法的风电机组发电机故障
诊断方法。 通过采集风力发电机组的实时 SCADA 系统数据,包括风速、功率输出、温度等关键指标,并利用这些数
据作为模型输入特征。 采用极致梯度提升树( XGBoost) 算法进行故障诊断模型的训练和测试。 XGBoost 作为一种高
效的梯度提升算法,具有处理高维特征和大规模数据的能力,并且在分类问题中表现出色。 在模型开发过程中,对
SCADA 数据进行了预处理,包括数据清洗和特征选择。 通过交叉验证方法对 XGBoost 模型的参数进行了优化,以提
高模型的泛化能力和准确性。 实验结果表明,基于 SCADA 数据的 XGBoost 的诊断模型能够有效识别出的发电机故
障,其准确率达到了 93. 14%,精确率、召回率和 F1 分数指标均高于随机森林和 K-邻近模型。

关键词: 数据采集与监控系统, 极致梯度提升树, 发电机, 风力发电机组, 故障诊断

Abstract: The wind turbine generator is the core component of the wind power system. Its efficiency and stability
directly affect the overall power generation capacity and reliability of wind turbines, and are crucial to the economic benefits
of wind farms. This proposes a fault diagnosis method for wind turbine generators based on SCADA data and XGBoost
algorithm. By collecting real-time SCADA system data of wind turbines, including key indicators such as wind speed,
power output, and temperature, and using these data as input features for the model. The XGBoost algorithm was used to
train and test the fault diagnosis model. XGBoost as an efficient gradient boosting algorithm, had the ability to handle highdimensional features and large-scale data, and performs well in classification problems. During the model development
process, was the SCADA data preprocessed, including data cleaning and feature selection. The parameters of the XGBoost
model were optimized through cross validation to improve its generalization ability and accuracy. The experimental results
show that the XGBoost diagnostic model based on SCADA data can effectively identify generator faults, with an accuracy of
93. 14%. The accuracy, recall, and F1 score indicators are all higher than those of random forest and K-nearest neighbor

models.

中图分类号: