微特电机 ›› 2025, Vol. 53 ›› Issue (4): 43-48.

• 驱动控制 • 上一篇    下一篇

基于 AEKF 观测器的 PMSM 转动惯量与负载转矩在线辨识


  

  1. 南昌航空大学 信息工程学院,南昌 330063
  • 收稿日期:2024-12-12 出版日期:2025-04-28 发布日期:2025-04-28
  • 通讯作者: 王长坤( 1963—) ,男,硕士,副教授,硕士生导师,研究方向为控制理论与控制工程。
  • 作者简介:李昌峰( 1996—) ,男,硕士研究生,研究方向为永磁同步电机控制。

Online Identification of PMSM Moment of Inertia and Load Torque Based on AEKF Observer

  1. School of Information Engineering,Nanchang Hangkong University,Nanchang 330063,China
  • Received:2024-12-12 Online:2025-04-28 Published:2025-04-28

摘要: 针对扩展卡尔曼观测器( EKF) 对永磁同步电机的机械参数在线辨识过程中收敛速度与滤波效果相矛
盾的问题,通过分析系统噪声协方差矩阵 Q 对辨识效果的影响,设计了一种新型自适应控制器。 根据上一时刻的估
计误差来检测当前工况是否发生较大变化,实时动态调整 Q 矩阵和系统状态转移矩阵的值,实现了 Q 矩阵和状态转
移矩阵自适应调整,从而快速适应当前工况,增加了系统动态响应速度和鲁棒性。 仿真结果证明,与传统 EKF 观测
器相比,新型自适应 EKF 观测器能够保持良好的滤波效果,同时具有较快的收敛速度,转动惯量的辨识精度提升了
30%,负载转矩辨识的精度提高了 35%,收敛速度提升了 36%。

关键词: 永磁同步电机, 扩展卡尔曼滤波, 转动惯量辨识, 负载转矩辨识

Abstract: In response to the contradiction between convergence speed and filtering effect in the online identification of
mechanical parameters of permanent magnet synchronous motors using the extended Kalman filter ( EKF) , a new adaptive
mechanism was designed by analyzing the influence of the system noise covariance matrix Q on the identification effect.
This mechanism could detect whether there was a significant change in the current working condition based on the estimation
error at the previous moment and dynamically adjust the values of the Q matrix and system state transition matrix in real
time. The adaptive adjustment of the Q matrix and state transition matrix was achieved, which quickly adapts to the current
working condition, increases the system’ s dynamic response speed and robustness. Simulation experiments had verified that
compared with the traditional EKF observer, the new adaptive Kalman observer maintains good filtering performance while
having a faster convergence speed. The identification accuracy of moment of inertia has been improved by 30%, the
accuracy of load torque identification has been improved by 35%, and the convergence speed has been improved by 36%.

Key words: permanent magnet synchronous motor ( PMSM ), extended Kalman filter ( EKF ), moment of inertia identification, load torque identification