微特电机 ›› 2025, Vol. 53 ›› Issue (2): 74-78.

• 驱动控制 • 上一篇    下一篇

基于粒子群优化随机森林的风电主轴承故障诊断

孟井煜枫,杨禄铭,饶晨晖,施德华,蔡海洋,吴博阳   

  1. 运达能源科技集团股份有限公司,杭州 310012
  • 收稿日期:2024-11-29 出版日期:2025-02-28 发布日期:2025-02-26

Fault Diagnosis of Wind Turbine Main Bearings Based on Particle Swarm Optimization and Random Forest

MENG Jingyufeng, YANG Luming, RAO Chenhui, SHI Dehua, CAI Haiyang, WU Boyang   

  1. Windey Energy Technology Group Co. , Ltd. ,Hangzhou 310012, China
  • Received:2024-11-29 Online:2025-02-28 Published:2025-02-26

摘要: 提出了一种基于粒子群优化( PSO) 算法和随机森林( RF) 模型的新型故障诊断方法,用于风电主轴承的故障检测。 通过结合 PSO 算法的特征选择能力和 RF 模型的高准确性和稳定性,优化了特征子集,显著提升了故障诊断的准确性与可靠性。 实验结果表明,PSO-RF 模型在风电主轴承故障检测任务中的诊断准确率达到 92. 42%,F1值为 75. 38%,各项性能指标均优于未优化的 RF 模型、XGBoost 模型以及 K-近邻算法。 PSO-RF 模型在鲁棒性测试中展现了对异常值和噪声的高容忍度,以及良好的跨工况泛化能力,该方法不仅提高了模型的诊断能力,还为风电设备的维护和故障预警提供了新的技术手段,有助于提高风电场的运行效率和设备可靠性。

关键词: 风电主轴承, 故障诊断, 粒子群优化, 随机森林, 特征选择, 机器学习

Abstract: A novel fault diagnosis method based on particle swarm optimization ( PSO) algorithm and random forest ( RF) model was proposed for fault detection of wind turbine main bearings. The feature subset was optimized by combining the feature selection capability of PSO algorithm with the high accuracy and stability of RF model, significantly improving the accuracy and reliability of fault diagnosis. The experimental results show that the PSO-RF model had a diagnostic accuracy of 92. 42% and an F1 value of 75. 38% in wind power main bearing fault detection tasks. All performance indicators were superior to the unoptimized RF model, XGBoost model and K-nearest neighbor algorithm. The PSO-RF model demonstrated high tolerance for outliers and noise in robustness testing, as well as good cross condition generalization ability. This method not only improves the diagnostic ability of the model, but also provides a new technical means for the maintenance and fault warning of wind power equipment, which helps to improve the operational efficiency and equipment reliability of wind farms.

Key words: wind power main bearings, fault diagnosis, particle swarm optimization ( PSO), random forest ( RF), feature selection, machine learning

中图分类号: