微特电机 ›› 2025, Vol. 53 ›› Issue (1): 53-59.

• 驱动控制 • 上一篇    下一篇

改进星鸦优化算法的无刷直流电机控制研究

王  博1,李昕涛2,王  珂2,石  磊2,常  达1   

  1.  1. 太原科技大学 电子信息工程学院,太原 030024; 2. 重型机械教育部工程研究中心,太原 030024
  • 收稿日期:2024-04-30 出版日期:2025-01-28 发布日期:2025-01-16

Research on Brushless DC Motor Control with Improved Nutcracker Optimization Algorithm

WANG Bo1, LI Xintao2, WANG Ke2, SHI Lei2 ,CHANG Da1   

  1.  1. School of Electronic and Information Engineering, Taiyuan University of Science and Technology,Taiyuan 030024,China;  2. Engineering Research Center of Heavy Machinery Ministry of Education,Taiyuan 030024,China
  • Received:2024-04-30 Online:2025-01-28 Published:2025-01-16

摘要: 针对无刷直流电机双闭环控制系统存在响应速度慢、控制精度低等问题,标准的星鸦优化算法( NOA)收敛速度较慢,研究一种改进星鸦优化算法( INOA) 优化 PID 控制器参数整定策略。 利用佳点集初始化种群,丰富星鸦种群多样性;加入随机惯性权重,用于平衡 INOA 的探索与开发;运用透镜成像反向学习策略对最优解进行贪婪学习,扩充最优解区间。 选取 4 组基准测试函数对 INOA 性能进行评估,进一步证明改进算法的有效性和可行性。在空载、突加转速和突加负载 3 种条件下进行仿真实验,仿真结果表明,相较于传统 PID 控制与模糊 PID 控制,采用改进星鸦优化算法的 PID 调速系统转速响应更快、控制精度更高。

关键词: 无刷直流电机, 星鸦优化算法, 佳点集, 随机惯性权重, 透镜成像反向学习策略, 转速控制

Abstract: Aiming at the problems of slow response speed and low control accuracy in the dual closed loop control system of brushless DC motor, and the slow convergence speed of the standard nutcracker optimization algorithm ( NOA) , an improved nutcracker optimization algorithm ( INOA) and optimized PID controller parameter tuning strategy was studied. The population was initialized using the best point set to enrich the diversity of the nutcracker population, random inertia weights were added to balance the exploration and development of the INOA, lens imaging reverse learning strategy was used to perform greedy learning on the optimal solution and expand the optimal solution interval. Four sets of benchmark test functions were selected to evaluate the performance of the INOA, further demonstrating the effectiveness and feasibility of the improved algorithm. Simulation experiments were conducted under three conditions: no-load, sudden increase in speed, and sudden increase in load. The simulation results showed that compared to traditional PID control and fuzzy PID control, the PID speed control system using the improved nutcracker optimization algorithm had a faster speed response and higher control accuracy.

Key words: brushless DC motor( BLDCM), nutcracker optimization algorithm( NOA), best point collection, random inertia weight, lens imaging reverse learning strategy, speed control

中图分类号: