微特电机 ›› 2025, Vol. 53 ›› Issue (1): 47-52.

• 驱动控制 • 上一篇    下一篇

基于改进滑模观测器的无刷直流电机控制研究

王  卓1,2,张新宇1,高良超1,南  盟1   

  1. 1. 中国船舶集团有限公司第七○三研究所,哈尔滨 100010; 2. 东北电力大学,吉林 132011
  • 收稿日期:2024-11-18 出版日期:2025-01-28 发布日期:2025-01-16

Research on Brushless DC Motor Control Based on Improved Sliding Mode Observer

WANG Zhuo1,2, ZHANG Xinyu1, GAO Liangchao1, NAN Meng1   

  1. 1. 703 Research Institue of China State Shipbuilding Corporation Limited,Harbin 100010,China;
    2. Northeast Electric Power University, Jilin City 132011,China
  • Received:2024-11-18 Online:2025-01-28 Published:2025-01-16

摘要: 为提高无刷直流电机控制的稳定性和可靠性,提出一种基于改进超螺旋滑模观测器的控制方法。 采用双曲线函数作为超螺旋滑模观测器的开关函数,避免控制过程中的抖动;采用 PSO-GA 混合算法改进模糊控制,对超螺旋滑模观测器的输入误差和误差变换量进行在线整定,仿真结果表明,该方法控制下,无刷直流电机的换相信号和霍尔信号的相位误差约为 1×10-6 s,转速估计误差约为 5 r/min。 基于改进超螺旋滑模观测器的控制方法实现了无刷直流电机稳定、可靠的控制。

关键词: 超螺旋滑模观测器, 无刷直流电机, 开关函数, 模糊控制, 粒子群优化算法, 遗传算法

Abstract: To improve the stability and reliability of brushless DC motor control, a control method based on improved super twisting sliding mode observer was proposed. A hyperbolic function was adopted as the switching function of the super twisting sliding mode observer to avoid the shaking during the control process; PSO-GA hybrid algorithm was used to improve the fuzzy control, and the input error and error transformation of the super twisting sliding mode observer were
adjusted online. The simulation results show that under the control of this method, the phase error between the commutation signal and Hall signal of the brushless DC motor was about 1×10-6 s and the speed estimation error was about 5 r/min. It could be concluded that the control method based on improved super twisting sliding mode observer can achieve stable and reliable control of the brushless DC motor.

Key words: super twisting sliding mode observer, brushless DC motor, switching function, fuzzy control, particle swarm optimization( PSO) algorithm, genetic algorithm( GA)

中图分类号: