微特电机 ›› 2024, Vol. 52 ›› Issue (4): 28-32.

• 设计分析 • 上一篇    下一篇

基于 Zoom -FFT -CEEMD 和小波包降噪的风电机组齿轮箱故障特征提取和诊断

孟井煜枫1,2,杨禄铭1,2,张  铖1,2,吴博阳1,2,徐国平1,2,俞  健1,2   

  1. 1. 运达能源科技集团股份有限公司,杭州 311199; 2. 浙江省风力发电技术重点实验室,杭州 311199
  • 收稿日期:2023-12-01 出版日期:2024-04-28 发布日期:2024-04-28

Fault Feature Extraction and Diagnosis of Wind Turbine Gearbox Based on Zoom-FFT-CEEMD and Wavelet Packet Denoising

MENG Jingyufeng YANG Luming ZHANG Cheng et al.   

  1. 1. Windey Energy Technology Group Co. , Ltd. ,Hangzhou 311199, China;
    2. Zhejiang Key Laboratory of Wind Power Generation Technology,Hangzhou 311199, China
  • Received:2023-12-01 Online:2024-04-28 Published:2024-04-28

摘要: 基于信号处理的风电机组齿轮箱故障诊断是风力发电领域中的重要研究方向。 针对风电机组齿轮箱故障特征提取问题,提出了一种基于 Zoom-FFT-CEEMD 和小波包降噪的方法。 通过对在风电机组齿轮箱振动测点所采集到各个测点的振动加速度信号做 RMS 趋势分析,找出 RMS 趋势明显上升的测点和时间段。 利用小波包降噪技术对该测点的振动信号进行降噪处理,互补集合经验模态分解( CEEMD) 得到的分量对振动信号进行多尺度分析,再使用 Zoom 算法对齿轮箱振动信号进行局部放大,以突出故障信号。 利用快速傅里叶变换( FFT) 对放大后的信号进行频谱分析,以提高故障特征的提取准确性。 实验结果表明,与传统频谱分析法相比,该方法能够有效地提取风电机组齿轮箱的故障特征,具有较高的准确性和稳定性,为风电机组齿轮箱的早期故障诊断提供了一种有效的方法。

关键词: 齿轮箱, 互补集合经验模态分解, 细化快速傅里叶变换, 小波包, 特征提取, 故障诊断

Abstract: Fault diagnosis of wind turbine gearbox based on signal processing is an important research direction in the field of wind power generation. A method based on Zoom-FFT-CEEMD and wavelet packet noise reduction was proposed for the problem of wind turbine gearbox fault feature extraction. The RMS trend analysis was done on the vibration acceleration signals of each measurement point collected at the vibration measurement points of the wind turbine gearbox to find out the measurement points and time periods where the RMS trend rises significantly. The wavelet packet noise reduction technique was used to reduce the noise of the vibration signals at the measurement point, followed by multi-scale analysis of the vibration signals with the components obtained from the complementary ensemble empirical modal decomposition ( CEEMD) decomposition, and the Zoom algorithm was used to locally amplify the vibration signals of the gearboxes in order to highlight the fault signals. The amplified signal was analysed spectrally using fast fourier transform ( FFT) to improve the accuracy of fault feature extraction. The experimental results show that compared with the traditional spectrum analysis method, the method could effectively extract the fault features of the wind turbine gearbox with high accuracy and stability, providing an effective means for the early fault diagnosis of wind turbine gearboxes.

Key words: gearbox,complementary ensemble empirical modal decomposition( CEEMD), Zoom-FFT,wavelet packet, feature extraction, fault diagnosis

中图分类号: