微特电机 ›› 2024, Vol. 52 ›› Issue (1): 31-35.

• 设计分析 • 上一篇    下一篇

基于灰狼算法的无轴承永磁同步电机多目标优化

周晓燕,张庭恺,朱来澳,卢庆轩,吴昊昱   

  1. 青岛理工大学 信息与控制工程学院,青岛 266525
  • 收稿日期:2023-06-25 出版日期:2024-01-28 发布日期:2024-01-26

Multi-Objective Optimization of Bearingless Permanent Magnet Synchronous Motor Based on Grey Wolf Algorithm

ZHOU Xiaoyan, ZHANG Tingkai, ZHU Laiao, LU Qingxuan, WU Haoyu   

  1. School of Information and Control Engineering,Qingdao University of Technology,Qingdao 266525,China
  • Received:2023-06-25 Online:2024-01-28 Published:2024-01-26

摘要: 为了降低无轴承永磁同步电机的悬浮脉动并提高电机的转矩,使其性能更加优越,提出了基于解析-灰狼算法对电机进行多目标优化设计。 通过对比解析法和有限元法的计算结果,验证了解析法计算的准确性。 将电机的气隙宽度、槽口宽度、极弧系数和永磁体厚度 4 个变量作为优化参数对电机进行多目标优化。 对比优化前后的结果,电机的悬浮力脉动和转矩得到了明显的改善,验证了该算法的可行性。

关键词: 无轴承永磁同步电机, 灰狼算法, 解析法, 多目标优化

Abstract: In order to reduce the suspension force ripples and improve the torque of bearingless permanent magnet synchronous motor for better performance, a motor multi-objective optimization design method based on the analytical-grey wolf algorithm was proposed. By comparing the calculation results of the analytical method and the finite element method, the accuracy of the analytical method calculation was verified. The air gap width, permanent magnet thickness, pole arc coefficient and slot width were used as optimization parameters for multi-objective optimization of the motor. Comparing the results before and after optimization, the suspension force ripples and torque of the motor were significantly improved, which verified the feasibility of the algorithm.

Key words: bearingless permanent magnet synchronous motor, grey wolf algorithm, analytical method, multi-objective optimization

中图分类号: