[1] 刘吉臻,王庆华,房方,等.数据驱动下的智能发电系统应用架构及关键技术[J].中国电机工程学报,2019,39(12):3578-3587. [2] SUN C,ZHANG Z,HE Z,et al.Manifold learning-based subspace distance for machinery damage assessment[J].Mechanical Systems and Singal Processing,2016(3):637-649. [3] 宋向金,赵文祥.交流电机信号特征分析的滚动轴承故障诊断方法综述[J].中国电机工程学报,2022,42(4):1582-1596. [4] ZHANG Q,ZHAO Z ,ZHANG X,et al.Conditional adversarial domain generalization with a single discriminator for bearing fault diagnosis[J].IEEE Transactions on Instrumentation and Measurement,2021(70):1-15. [5] 王崇宇,郑召利,刘天源,等.基于卷积神经网络的汽轮机转子不平衡与不对中故障检测方法研究[J].中国电机工程学报,2021,41(7):2417-2427. [6] 袁建虎,韩涛,唐建,等.基于小波时频图和CNN的滚动轴承智能故障诊断方法[J].机械设计与研究,2017,33(2):93-97. [7] JIA F,LEI Y.Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization[J].Mechanical Systems and Signal Processing,2018(110):349-367. [8] 王玉静,吕海岩,康守强,等.不同型号滚动轴承故障诊断方法[J].中国电机工程学报,2021,41(1):267-276,416. [9] 梁丽冰.基于卷积神经网络滚动轴承故障诊断建模方法研究[D].北京:北京化工大学,2021. [10] 褚若波,张认成,杨凯,等.基于多层卷积神经网络的串联电弧故障检测方法[J].电网技术,2020,44(12):4792-4798. [11] 张根保 ,李浩 ,冉琰,等.一种用于轴承故障诊断的迁移学习模型[J].吉林大学学报(工学版),2020,50(5):1617-1626. [12] WEN L,LI X,GAO L.A transfer convolutional neural network for fault diagnosis based on ResNet-50[J].Neural Computing & Applications,2020,32(10):6111-6124. [13] HUANG X,SHANG E,XUE J,et al.A multi-feature fusion-based deep learning for insulator image identification and fault detection[C]//2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference,2020:1957-1960. [14] NERGIZ M.Analysis of RepVGG on small sized dandelion images dataset in terms of transfer learning,regularization,spatial attention as well as squeeze and excitation blocks[C]// 6th International Conference on Computer Science and Engineering,2021:378-382. [15] 侯东晓,穆金涛,方成,等.基于GADF与引入迁移学习的ResNet34对变速轴承的故障诊断[J].东北大学学报(自然科学版),2022,43(3):383-389. [16] 董绍江,朱朋,裴雪武,等.基于子领域自适应的变工况下滚动轴承故障诊断[J].吉林大学学报(工学版),2022 ,52(2):288-295. [17] 曹洁,尹浩楠,雷晓刚,等.基于领域自适应的变工况轴承故障诊断[J/OL].北京航空航天大学学报:1-13 [2022-11-16].https://doi.org/10.13700/j.bh.1001-5965.2022.0631. [18] LI X,ZHANG W,DING Q.A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning[J].Neurocomputing,2018(310):77-95. [19] DING X,ZHANG X,MA N,et al.RepVGG:Making VGG-Style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Kuala Lumpur,Malaysia:IEEE,2021(1):13728-13737. [20] WEINBERGER K,SAUL L.Distance metric learning for large margin nearest neighbor classification[J]. Journal of Machine Learning Research,2009(10):207-244. [21] GLOBERSON A,ROWEIS S.Metric learning by collapsing classes[C]//Proceedings of the Eighteenth International Conference on Neural Information Processing Systems,2005(1):451-458. [22] DENG J,DONG W,SOCHER R,et al.Imagenet:a large-scale hierarchical image database[C]//IEEE-Computer-Society Conference on Computer Vision and Pattern Recognition Workshops,2009:248-255. [23] ZHU Y,ZHUANG F,WANG J,et al.Deep subdomain adaptation network for image classification[J].IEEE Transactions on Neural Networks and Learning Systems.2020,32(4):1713-1722. [24] GRETTON A,BORGWARD K M,RASCH M J,et al.A kernel two-sample test[J].Journal of Machine Learning Research,2012(13):723-773. [25] 顾晓辉,杨绍普,刘永强,等.基于多目标交叉熵优化的轮对轴承故障特征提取方法[J].机械工程学报,2018,54(4):285-292.
|