微特电机 ›› 2023, Vol. 51 ›› Issue (2): 26-30.

• 设计分析 • 上一篇    下一篇

基于神经网络和粒子群算法的永磁同步电机运行与振动性能优化

胡文韬1, 李华2, 郑东1, 华春蓉1, 沈思思3   

  1. 1.西南交通大学 机械工程学院,成都 610031;
    2.山东省东营市胜利油田石油化工总厂中心化验室,东营 257000;
    3.国家知识产权局专利局专利审查协作四川中心,成都 610014
  • 收稿日期:2021-12-29 出版日期:2023-02-28 发布日期:2023-03-01
  • 通讯作者: 郑东(1987—),男,硕士生导师,主要研究方向为永磁同步电机振动与噪声控制。
  • 作者简介:胡文韬(1997—),男,硕士研究生,主要研究方向为电机振动与噪声控制。

Optimization of Operation and Vibration Performance of Permanent Magnet Synchronous Motor Based on Neural Network and Particle Swarm Algorithm

HU Wentao1, LI Hua2, ZHENG Dong1, HUA Chunrong1, SHEN Sisi3   

  1. 1. School of Mechanical Engineering, Southwest Jiaotong University,Chengdu 610031,China;
    2. Central Laboratory of Petrochemical Complex, Shengli Oilfield, Dongying City, Shandong Province, Dongying 257000,China;
    3. Sichuan Center for Patent Examination Cooperation of the Patent Office of the State IntellectualProperty Office, Chengdu 610014,China
  • Received:2021-12-29 Online:2023-02-28 Published:2023-03-01

摘要: 为了兼顾新能源驱动电机的运行性能和振动性能,对该型号驱动电机进行综合优化。采用数值计算方法分析8极48槽永磁同步电机的主要结构参数对电机运行性能和振动性能的影响,建立神经网络模型拟合电机结构参数与性能表现之间的映射关系,并基于测试数据集进行验证;使用粒子群算法优化电机的结构参数,从而获得驱动电机振动性能和运行性能之间的非劣最优解。优化后的电机与初始样机相比在驱动性能基本保持不变的基础上,转矩脉动和振动位移方面都有了明显的优化。

关键词: 永磁同步电机, 电磁振动, 粒子群算法, 神经网络, 多目标优化

Abstract: In order to take into account the operation and virbation performance of the new energy drive motor, the drive motor of the model was comprehensively optimized.The numerical calculation method was used to analyze the influence of the main structural parameters of the 8-pole 48-slot synchronous motor on the different performance of the motor, and a neural network model was established to fit the mapping relationship between the motor's structural parameters and performance. The particle swarm algorithm was used to optimize the structural parameters of the motor to obtain a non-inferior optimal solution between the vibration performance and the running performance of the drive motor. Compared with the original prototype, the optimized motor had obvious optimization in terms of torque ripple and vibration displacement.

Key words: permanent magnet synchronous motor(PMSM), electromagnetic vibration, particle swarm algorithm, neural network, multi-objective optimization

中图分类号: