微特电机 ›› 2021, Vol. 49 ›› Issue (2): 29-33.

• 设计分析 • 上一篇    下一篇

基于小生境粒子群算法的永磁同步电机参数辨识

陶涛, 林荣文   

  1. 福州大学 电气工程与自动化学院,福州 350108
  • 收稿日期:2020-04-22 发布日期:2021-02-25
  • 作者简介:陶涛(1996—),男,硕士研究生,研究方向为新型电机理论与控制。

Parameter Identification of Permanent Magnet Synchronous Motor Based on Niche PSO Algorithm

TAO Tao, LIN Rong-wen   

  1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
  • Received:2020-04-22 Published:2021-02-25

摘要: 永磁同步电机的电磁参数会随着温度和磁路等因素的变化而变化,参数辨识的准确度对电机控制系统性能有重要影响,而传统的辨识算法存在收敛速度慢,辨识精度低等缺陷。针对该问题,可以采用一种基于粒子群算法的参数辨识方法。该方法输入参数测量简单,可同时对电阻、电感、磁链三个参数准确辨识,同时引入小生境技术和粒子群改进策略,可以克服基本粒子群算法容易陷入局部最优的缺陷,获得更好的辨识精度和收敛速度。仿真结果证明了该方法的可行性和正确性。

关键词: 永磁同步电机, 参数辨识, 粒子群算法, 小生境技术, 小生境粒子群算法

Abstract: The electromagnetic parameters of permanent magnet synchronous motor change with the change of temperature and magnetic circuit, and the accuracy of its identification has an important influence on the performance of its control system. The traditional identification algorithm has the defects of slow convergence speed and low identification accuracy. To solve this problem, a parameter identification method based on particle swarm optimization algorithm was adopted. This method was simple to measure the input parameters, and could identify the three parameters of resistance, inductance and flux accurately at the same time. Meanwhile, the niche technology and particle swarm optimization improvement strategy were introduced to overcome the defect that the basic particle swarm optimization algorithm is easy to fall into local optimum, and obtain better identification accuracy and convergence speed. The simulation results show that the method is feasible and correct.

Key words: permanent magnet synchronous motor (PMSM), parameter identification, particle swarm optimization (PSO), niche technology,niche particle swarm optimization (NPSO)

中图分类号: