[1] | FAN L S, TAI Y C, MULLLER R S . Integrated movable micromechanical structures for sensors and actuators[J]. IEEE Transactions on Electronical Devices, 1988,35(6):724-730. | [2] | FELDMANN M, BUTTGENBACH S . Linear variable reluctance (VR) micro motors with compensated attraction force:concept,simulation,fabrication and test[J]. IEEE Transactions on Magnetics, 2007,43(6):2567-2569. | [3] | WALDSCHIK A, FELDMANN M, SEIDEMANN V , et al. Development and fabrication of elect-romagnetic microactuators[M] //Design and Manufacturing of Active Microsystems.Springer Berlin Heidelberg, 2011: 207-224. | [4] | GAO W, SATTAYASAMITSATHIT S, MANESH K M , et al. Magnetically powered flexible metal nanowire motors[J]. Journal of the American Chemical Society, 2010,132(41):14403-14407. | [5] | BERG H C, ANDERSON R A . Bacteria swim by rotating their flagellar filaments[J]. Nature, 1973,245(5425):380-382. | [6] | LI J, SATTAYASAMITSATHIT S, DONG R , et al. Template electrosynjournal of tailored-made helical nanoswimmers[J]. Nanoscale, 2014,6(16):9415-9420. | [7] | GAO W, FENG X, PEI A , et al. Bioinspired helical microswimmers based on vascular plants[J]. Nano Letters, 2014,14(1):305. | [8] | YAN X, ZHOU Q, YU J , et al. Magnetite nanostructured porous hollow helical microswimmers for targeted delivery[J]. Advanced Functional Materials, 2015,25(33):5333-5342. | [9] | SONG Y, CHEN S . Janus nanoparticles: preparation, characterization, and applications[J]. Chemistry-An Asian Journal, 2014,9(2):418-430. | [10] | LEE K, YI Y, YU Y . Remote Control of T cell activation using magnetic janus particles[J]. Angewandte Chemie, 2016,55(26):73-84. | [11] | 许太林 . 超声控制与驱动微纳米马达[D]. 北京:北京科技大学, 2017. | [12] | WANG W, CASTRO L A, HOYOS M , et al. Autonomous motion of metallic microrods propelled by ultrasound[J]. Acs Nano, 2012,6(7):6122-6132. | [13] | GARCIAGRADILLA V, SATTAYASAMITSATHIT S, SOTO F , et al. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release[J]. Small, 2014,10(20):41-54. | [14] | XU T, SOTO F, GAO W , et al. Ultrasound-modulated bubble propulsion of chemically powered microengines[J]. Journal of the American Chemical Society, 2014,136(24):8552-8556. | [15] | PAPADAKIS S J, HALL A R, WILLIAMS P A , et al. Resonant oscillators with carbon-nanotube torsion springs[J]. Physical Review Letters, 2004,93(14):146101. | [16] | MEYER J C, PAILLET M, ROTH S . Single-molecule torsional pendulum[J]. Science, 2005,309(5740):1539-1541. | [17] | KIM K, XU X, GUO J , et al. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks[J]. Nature Communications, 2014,5(5):3632. | [18] | SHARMA R, VELEV O D . Remote steering of self‐propelling microcircuits by modulated electric field[J]. Advanced Functional Materials, 2015,25(34):5512-5519. | [19] | ASHKIN A, DZIEDZIC J M, BJORKHOLM J E , et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986,11(5):288. | [20] | BERTHELOT J, ACIMOVIC S S, JUAN M L , et al. Three-dimensional manipulation with scanning near-field optical nanotweezers[J]. Nature Nanotechnology, 2014,9(4):295. | [21] | PAUZAUSKIE P J, RADENOVIC A, TREPAGNIER E , et al. Optical trapping and integration of semiconductor nanowire assemblies in water[J]. Nature Materials, 2006,5(2):97-101. | [22] | HASHEMI S M, MEIJERING A E, ROOS W H , et al. Recent advances in biological single-molecule applications of optical tweezers and fluorescence microscopy[J].Methods Enzymol, 2017(582):85-119. | [23] | TI C, THANH M T H,SHEN Y , et al. Fiber optical tweezers for applying and measuring forces in a 3D solid compartment[M] //Selected Topics on Optical Fiber Technologies and Applications, 2018. | [24] | SHAO L, YANG Z J, ANDREN D , et al. Gold nanorod rotary motors driven by resonant light scattering[J]. Acs Nano, 2015,9(12):12542-12551. | [25] | ZHANG Y, WANG J, SHEN J , et al. Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface.[J]. Nano Letters, 2014,14(11):6430-6436. | [26] | JOHANSEN P L, FENAROLI F, EVENSEN L , et al. Optical micromanipulation of nanoparticles and cells inside living zebrafish[J].Nature Communications, 2016(7):10974. | [27] | JIANG H R, YOSHINAGA N, SANO M . Active motion of a Janus particle by self-thermophoresis in a defocused laser beam[J]. Physical Review Letters, 2010,105(26):268-302. | [28] | MAGGI C, SAGLIMBENI F, DIPALO M , et al. Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects[J].Nature Communications, 2015(6):7855. | [29] | MOU F, LI Y, CHEN C , et al. Single-Component TiO2 tubular microengines with motion controlled by light-induced bubbles.[J]. Small, 2015,11(21):2564. | [30] | 吴志光 . 自驱动合成微纳米马达的仿生设计及其生物医学应用[D]. 哈尔滨:哈尔滨工业大学, 2015. | [31] | DONG R, ZHANG Q, GAO W , et al. Highly efficient light-driven TiO2-Au janus micromotors[J]. Acs Nano, 2015,10(1):839. | [32] | MCLEOD E, ARNOLD C B . Subwavelength direct-write nanopatterning using optically trapped microspheres[J]. Nature Nanotechnology, 2008,3(7):413-419. | [33] | VAN N K, MINTEER S D . DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor[J]. Chemical Communications, 2015,51(23):4782-4785. | [34] | WU Z, LIN X, ZOU X , et al. Biodegradable protein-based rockets for drug transportation and light-triggered release[J]. Acs Applied Materials & Interfaces, 2015,7(1):250-254. | [35] | WANG W, DUAN W, ZHANG Z , et al. A tale of two forces: simultaneous chemical and acoustic propulsion of bimetallic micromotors[J]. Chemical Communications, 2015,51(6):1020-1022. | [36] | KAGAN D, BENCHIMOL M J, CLAUSSEN J C , et al. Acoustic droplet vaporization and propulsion of perfluorocarbon‐loaded microbullets for targeted tissue penetration and deformation[J]. Angewandte Chemie, 2012,51(30):7519. | [37] | SRIVASTAVA S K, GUIX M, SCHMIDT O G . Wastewater mediated activation of micromotors for efficient water cleaning[J]. Nano Letters, 2015,16(1):817. |
|