微特电机 ›› 2019, Vol. 47 ›› Issue (1): 55-58.doi: 1004-7018-47-1-55

• 驱动控制 • 上一篇    下一篇

轮内电动汽车直接横摆力矩控制

严友1,李美2   

  1. 1. 衢州职业技术学院,衢州 324000
    2. 海南大学,海口 570228
  • 收稿日期:2018-06-05 出版日期:2019-01-28 发布日期:2019-01-28
  • 作者简介:严友(1989—),男,硕士研究生,讲师,研究方向为汽车动态性能控制。
  • 基金资助:
    海南省自然科学基金项目(518QN209)

Direct Yaw Moment Control of In-Wheel Electric Vehicle

YAN You1,LI Mei2   

  1. 1. Quzhou College of Technology,Quzhou 324000,China
    2. Hainan University,Haikou 570228,China
  • Received:2018-06-05 Online:2019-01-28 Published:2019-01-28

摘要:

针对参数变化及不确定性干扰等非线性因素对于车辆稳定性的影响,设计出一种基于自适应鲁棒滑模控制的策略,保证轮内电动汽车在上述不确定因素的干扰下,仍然可以保证车辆的行驶稳定性。具体搭建了整车二自由度模型和驱动电动机模型,设计自适应鲁棒滑模控制律,利用先进车辆动力学仿真软件Carsim对该控制策略进行了仿真实验;同时进行了实车试验。试验和仿真结果表明,该算法可有效实现直接横摆力矩控制,使车辆在有较大侧向风的干扰下保持行驶稳定性。

关键词: 轮内电动汽车, 直接横摆力矩控制, 自适应鲁棒滑模, 行驶稳定性

Abstract: Aim

ing at the influence of nonlinear factors such as parameter change and uncertainty disturbance on vehicle stability, a strategy based on adaptive robust sliding mode(ARSM) control was designed to ensure that the in-wheel electric vehicle can still guarantee the vehicle driving stability under the interference of the above uncertain factors.A two-degree-of-freedom vehicle model and driving motor model were built, an adaptive robust sliding mode control law wqs designed, advanced vehicle dynamics simulation software Carsim was used to simulate the control strategy. The results show that the algorithm can effectively achieve direct yaw moment control, so that the vehicle maintains driving stability under the influence of large lateral wind.

Key words: in-wheel electric vehicle (IEV), direct yaw moment control (DYC), adaptive robust sliding mode, driving stability

中图分类号: