[1] | MEDJAHER K, SKIMA H, ZERHOUNI M . Condition assessment and fault prognostics of microelectromechanical systems[J]. Microelectronics Reliability, 2014,54(6):143-151. | [2] | STEPANENKO D A, MINCHENYA V T . Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry[J]. Ultrasonics, 2012,52(8):866-872. | [3] | SHI J Z, YOU D M . Characteristic model of travelling wave ultrasonic motor[J]. Ultrasonics, 2014,54(11):725-730. | [4] | 赵淳生 . 超声电机技术与应用[M]. 北京: 科学出版社, 2007. | [5] | 胡敏强, 王心坚, 金龙 , 等. 行波超声波电机瞬态特性的测试及分析[J]. 中国电机工程学报, 2006,26(23):120-125. | [6] | LI H R, WANG Y K, WANG B , et al. The application of a generalized mathematical morphological particle as a novel indicator for the performance degradation assessment of a bearing[J].Mechanical Systems and Signal Processing, 2017(82):490-502. | [7] | DRAGOMIRETSKIY K, ZOSSO D . Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014,62(3):531-544. | [8] | LIU Y Y, YANG G L, LI M , et al. Variational mode decomposition denoising combined the detrended fluctuation analysis[J]. Signal Processing, 2016,125(4):349-364. | [9] | MERT A . ECG feature extraction based on the bandwidth properties of variational mode decomposition[J]. Physiological Measurement, 2016,37(3):530-543. | [10] | WANG Y X, MARKERT R, XIANG K W et al. Research on vari-ational mode decomposition and its application in detecting rub-impact fault of the rotor system[J].Mechanical Systems and Signal Processing, 2015(60-61):243-251. | [11] | 雷钧, 刘和国, 杨庆生 . 基于相互作用积分法的压电裂纹边界元分析[J]. 北京工业大学学报, 2016,42(2):161-166. | [12] | 吴业坤 . 行波型压电超声马达的机理仿真与设计制作[D]. 武汉:武汉理工大学, 2006. | [13] | 郭怀民 . 压电材料中星型裂纹的应力分析[J]. 黑龙江大学自然科学学报, 2015,32(1):135-140. | [14] | 石斌, 胡敏强, 朱壮瑞 . 粘结层对超声马达定子振动特性的影响[J]. 中国电机工程学报, 2001,21(7):72-77. | [15] | Xie P, Yang F M, Li X X , et al. Functional coupling analyses of electroencephalogram and electromyogram based on variational mode decomposition-transfer entropy[J]. Acta Physica Sinica 2016,65(11):118701. | [16] | Vapnik V . The nature of statistical learning theory[M]. New York:Spring-Verlag, 1995. | [17] | 王余奎, 李洪儒, 魏晓斌 , 等. 基于局部特征尺度分解谱熵和VPMCD的液压泵退化状态识别[J]. 振动与冲击, 2016,35(12):188-195. | [18] | 和麟, 梁丽嫒, 黄潇瑶 , 等. 基于粒子群优化SVM的飞机发电机故障诊断[J]. 计算机测量与控制, 2013,21(12):212-217. | [19] | 梅飞, 梅军, 郑建勇 , 等. 粒子群优化的KFCM及SVM诊断模型在断路器故障诊断中的应用[J]. 中国电机工程学报, 2013,33(36):134-141. |
|