微特电机 ›› 2018, Vol. 46 ›› Issue (1): 49-51.doi: 1004-7018-46-1-49-51

• 驱动控制 • 上一篇    下一篇

基于改进PSO算法的横动伺服控制系统PID参数优化

曹薇1,谢天驰2   

  1. (1)广东水利电力职业技术学院,广州 510925
    (2)海南大学,海口 570228
  • 收稿日期:2016-10-25 出版日期:2018-01-28 发布日期:2018-02-26
  • 作者简介:曹薇(1973-),女,副教授,研究方向为自动化及智能算法应用及优化。
  • 基金资助:
    国家重点研发计划项目(2016YFC0104901);广东水利电力职业技术学院创新强校工程自主创新能力提升类项目(050117)

PID Parameter Optimization of Transverse Servo Control System Based on Improved PSO Algorithm

Wei CAO1,Tian-chi XIE2   

  1. (1) Guangdong Technical College of Water Resource and Electric Engineering,Guangzhou 510925,China
    (2) Hainan University,Haikou 570228,China
  • Received:2016-10-25 Online:2018-01-28 Published:2018-02-26

摘要:

针对横动伺服控制系统的位置控制器PID参数优化问题,设计了改进粒子群算法,成功实现了参数优化。设计了改进粒子群算法及其PID参数优化原理;在已知系统传递函数的基础上,利用Z-N法进行参数初求解;利用改进粒子群算法对初解进行参数寻优,并将优化前后的系统进行动态性能对比,结果表明:优化后的高阶非线性系统动态性能更好,响应速度更快,调节时间更短。

关键词: 横动系统, 高阶系统, 非线性系统, PID, 位置控制器, 粒子群算法

Abstract:

In order to solve the problem of PID parameter optimization of position controller in transverse servo control system, an improved particle swarm optimization (PSO) algorithm was designed, and the parameter optimization was realized successfully. The first design of improved particle swarm optimization algorithm and PID parameter optimization principle.Based on the known transfer function of system, the parameters of initial solution by Z-N method, and then used the improved particle swarm optimization algorithm for the initial solution for parameter optimization, and the system dynamic performance comparison before and after optimization, the results show that the better dynamic performance order nonlinear system after optimization, faster response speed, shorter regulating time.

Key words: transverse motion system, higher order system, nonlinear system, proportional-integral-derivetive(PID), position controller, particle swarm optimization (PSO) algorithm

中图分类号: