微特电机 ›› 2022, Vol. 50 ›› Issue (5): 1-6.

• 理论研究 •    下一篇

基于分形盒维数和GA-SVM的PMSM动态偏心故障诊断方法研究

薛赛, 贺青川, 潘骏, 黄晓诚   

  1. 浙江理工大学 机电产品可靠性分析与测试国家地方联合工程研究中心,杭州 310018
  • 收稿日期:2021-12-30 出版日期:2022-05-28 发布日期:2022-06-22
  • 作者简介:薛赛(1997—),男,硕士研究生,主要从事机电产品故障诊断方面的研究。
  • 基金资助:
    国家自然科学基金项目(51875529);装备预先研究领域基金项目(80902010302);NSFC-浙江两化融合项目(U1709210)

Research on Eccentricity Fault Diagnosis Method of Permanent Magnet Synchronous Motor Based on Fractal Box Dimension and GA-SVM

XUE Sai, HE Qingchuan, PAN Jun, HUANG Xiaocheng   

  1. National and Local Joint Engineering Research Center of Reliability Analysis and Testing for Mechanical and Electrical Products, Zhejiang Sci-Tech University,Hangzhou 310018,China
  • Received:2021-12-30 Online:2022-05-28 Published:2022-06-22

摘要: 针对永磁同步电机(PMSM)动态偏心故障的诊断难题,提出了一种基于分形盒维数和遗传算法参数优化的支持向量机(GA-SVM)的永磁同步电机动态偏心故障诊断方法。对振动信号进行经验模态分解(EMD),获得本征模态函数(IMF);利用相关系数法筛选出有效IMF分量;对有效IMF分量进行希尔伯特变换计算其瞬时频率,并计算出瞬时频率的分形盒维数作为特征向量;利用GA-SVM对提取的特征进行故障识别。研究结果表明:相比于传统故障诊断方法,利用所提方法能够实现更高精度的动态偏心故障诊断,诊断精度可以达到98.4%。

关键词: 永磁同步电机, 偏心故障, 经验模态分解, 希尔伯特变换, 分形维数, 遗传算法, 支持向量机

Abstract: Aiming at the diagnosis problem of permanent magnet synchronous motor (PMSM) dynamic eccentricity fault, a method of permanent magnet synchronous motor dynamic eccentricity fault diagnosis based on fractal box dimension and genetic algorithm-support vector machine (GA-SVM) was proposed. The empirical mode decomposition (EMD) was used to obtain the intrinsic mode function (IMF) of the vibration signal. The correlation coefficient method was used to filter out the effective IMF components. By performing the Hilbert transform on the effective IMF components, their instantaneous frequency and the fractal box dimension of instantaneous frequency as the feature vector were calculated. The GA-SVMwas used to identify the fault with the extracted features. The research results show that, compared with the traditional fault diagnosis method, the proposed method can achieve a higher-precision fault diagnosis of dynamic eccentric, which can reach 98.4%.

Key words: permanent magnet synchronous motor(PMSM), eccentric fault, empirical mode decomposition(EMD), Hilbert transform, fractal dimension, genetic algorithm(GA), support vector machine(SVM)

中图分类号: