微特电机 ›› 2019, Vol. 47 ›› Issue (9): 7-13.

• 理论研究 • 上一篇    下一篇

基于自适应滑窗的开关磁阻电机调速系统故障诊断

杨文浩1,2,苟斌1,2,雷渝1,2,宋潇潇1,2,王军1,2   

  1. 1.西华大学 电气与电子信息学院,成都 610039;2.四川省电力电子节能技术与装备高校重点实验室,成都 610039
  • 出版日期:2019-09-28 发布日期:2019-09-19
  • 基金资助:
    教育部春晖计划(Z2017082);西华大学研究生创新基金(ycjj2019104)

Fault Diagnosis of Switched Reluctance Motor Drive Based on Adaptive Sliding Window

YANG Wen-hao1,2, GOU Bin1,2, LEI Yu1,2, SONG Xiao-xiao1,2, WANG Jun1,2   

  1. 1. School of Electrical Engineering and Electronic Information, Xihua University,Chengdu 610039,China;
    2.Sichuan Province Key Laboratory of Power Electronics Energy-Saving Technologies & Equipment, Chengdu 610039,China
  • Online:2019-09-28 Published:2019-09-19

摘要: 针对开关磁阻电机调速系统(SRD)中功率变换器单管短路故障和传感器噪声故障,提出将k-邻近算法(kNN)和极限学习机(ELM)相结合的自适应滑窗故障诊断方法。通过对故障进行分析,采集三相定子电流作为原始数据,将快速傅里叶变换和ReliefF算法用于特征提取与选择,形成kNN算法与ELM算法相结合的多窗口自适应故障诊断机制。通过离线与在线仿真实验,证明了该方法诊断速度快,精度高。

关键词: 开关磁阻电机调速系统, 功率变换器, 传感器, k-近邻算法, 极限学习机

Abstract: Aiming at the single-tube short-circuit fault and sensor noise fault of power converter in switched reluctance motor drive (SRD), an adaptive sliding window fault diagnosis method combining k-nearest neighbor (kNN) algorithm and extreme learning machine (ELM) was proposed. The fault was analyzed and the three-phase stator current were collected as the original data. The fast fourier transform and ReliefF algorithm were used for feature extraction and selection. A multi-window adaptive fault diagnosis structure combining kNN algorithm and ELM algorithm was set up. Through offline and online simulation experiments, it is proved that the method has high diagnostic speed and high precision.

Key words: switched reluctance motor drive (SRD),, power converter, sensor, , k-nearest neighbor (kNN),, extreme learning machine (ELM)

中图分类号: