微特电机 ›› 2019, Vol. 47 ›› Issue (2): 76-82.doi: 1004-7018-47-2-76

• 驱动控制 • 上一篇    下一篇

深度置信网络拟合异步电动机逆变器控制开关表

单文丽,周军,钱慧敏,卢新彪,段朝霞,黄浩乾   

  1. 河海大学,南京 211100
  • 收稿日期:2018-07-18 出版日期:2019-02-28 发布日期:2019-02-22
  • 作者简介:单文丽(1994—),女,硕士研究生,研究方向为深度学习控制。
  • 基金资助:
    国家自然科学基金项目(61573001,61703137,61703098);江苏省自然科学基金项目(BK20160699)

Fitting Inverter Switching Table with Deep Belief Networks in Induction Motor System Control

SHAN Wen-li,ZHOU Jun,QIAN Hui-min,LU Xin-biao,DUAN Zhao-xia,HUANG Hao-qian   

  1. Hohai University, Nanjing 211100, China
  • Received:2018-07-18 Online:2019-02-28 Published:2019-02-22

摘要:

利用深度神经网络学习算法拟合异步电动机控制系统的逆变器开关表控制策略关系,并替代原逆变器开关表电路与逆变器一起形成深度学习控制器,是异步电动机智能控制解决方案的关键技术之一。即原逆变器开关表的输入输出数据作为深度置信神经网络的训练样本,从中学习拟合出具有逆变器开关表控制策略的深度网络拓扑与参数,借助AD/DA转换器接入实际系统,完成替代逆变器开关表硬件电路,智能化地实现异步电动机的控制策略。通过仿真比较两类控制器在各种参考信号下的控制效果,验证了深度置信网络拟合逆变器开关表控制的有效性和精确性。

关键词: 深度学习, 深度置信网络, 函数拟合, 逆变器, 异步电动机控制

Abstract:

The hardware controllers were designed by means of the LTI control theory, while neural network controllers are created by approximately fitting the strategies of the hardware controllers through pre-training the neural network algorithms. The approach is based on the fact that neural network algorithms can represent nonlinear functions as exactly as desired, whenever the neural networks have sufficient complexity in terms of neurons and hidden layers numbers. To illustrate the theoretical features, the inverter switching table of an induction motor control system being replaced with deep belief network (DBN) algorithm was examined. The input/output data of the inverter switching table were used as the training reference and target data for training the DBN algorithm, which in turn replaced the inverter switching table. This yielded an induction motor system driven by the DBN-algorithm control strategies. Numerical simulations and comparisons in between time responses under the inverter switching table of hardware circuits and those of the suggested DBN ones validate the expected control performances and accuracy.

Key words: deep learning, deep belief networks (DBN), function fitting, inverter, induction motor control

中图分类号: