微特电机 ›› 2025, Vol. 53 ›› Issue (12): 24-28.

• 设计分析 • 上一篇    下一篇

磁极偏心设计抑制齿槽转矩优化电机性能

石顺章1,2,姚鹏飞1,2,孙  平1,2   

  1. 1. 贵州航天林泉电机有限公司,贵阳 550008; 2. 国家精密微特电机工程技术研究中心,贵阳 550008
  • 出版日期:2025-12-28 发布日期:2025-12-28
  • 作者简介:石顺章( 2001—) ,男,本科,助理工程师,研究方向为无刷直流电机设计与优化。

Magnetic Pole Eccentricity Design Suppresses Cogging Torque to Optimize Motor Performance

SHI Shunzhang1,2,YAO Pengfei1,2,SUN Ping1,2   

  1. 1. Guizhou Aerospace Linquan Motor Co., Ltd., Guiyang 550008,China; 2. National Engineering Research Centre for Precision Microtechnology,Guiyang 550008,China
  • Online:2025-12-28 Published:2025-12-28

摘要: 齿槽转矩是永磁电机特有的问题之一。 在高精度应用场景下,该问题的解决需要贯穿电机设计、制造及控制的全流程。 基于电磁场调制理论,提出磁极径向偏心拓扑优化方法,以 6 极 9 槽无刷直流电机为研究对象,构建二维有限元电磁场仿真模型,通过参数化扫描对比不同径向偏心量 0 ~ 3. 5 mm 下偏心参数与齿槽转矩的非线性映射关系,当径向偏心量达到 3. 2 mm 时,齿槽转矩峰峰值显著降低至 0. 93 mN · m。有限元仿真结果表明,优化后的磁极结构不仅有效削弱了气隙磁导谐波,同时还提升了电机的空载、负载性能。 在此基础上构建电机三维模型,制作实验样机并进行测试,经实验验证,各相性能参数与仿真结果的相对误差均控制在 5%,工程允许范围内。 本研究为永磁电机的齿槽转矩抑制提供了可量化的设计方法和工程验证。

关键词: 齿槽转矩, 直流电机, 有限元, 径向偏心

Abstract: Cogging torque is one of the problems unique to permanent magnet motors. In high-precision application needs to run through the entire process of motor design,manufacturing and control. Based on the electromagnetic field modulation theory,a pole radial eccentricity topology optimization method was proposed, and a two-dimensional finite element electromagnetic field simulation model was constructed with a 6 - pole,9 - slot DC motor as the research object. Comparing the nonlinear mapping relationship between the eccentricity parameters and the cogging torque at different radial eccentricity amounts 0 ~ 3. 5 mm through parametric scanning, the peak value of the cogging torque is significantly reduced to 0. 93 mN·m when the radial eccentricity reaches 3. 2 mm. The finite element simulation results show that the optimized pole structure not only effectively attenuates the air gap permeability harmonics,but also improves the no-load and load performance of the motor. On this basis, the three-dimensional model of the motor was constructed,the test prototype was made and tested,and it was verified by the test that the relative errors between the performance parameters of each phase and the simulation results are controlled within 5 % of the engineering allowable range. This study provides a quantifiable design methodlogy and engineering validation for cogging torque rejection of permanent magnet motors.

Key words: cogging torque,DC motor,finite element,radial eccentricity