微特电机 ›› 2025, Vol. 53 ›› Issue (10): 76-80.

• 生产技术 • 上一篇    下一篇

基于类质心优化的大型风电机变桨轴承故障诊断技术

周  胡,张蕾蕾,金春伟,林子义,楚文楷   

  1. 中国电建集团华东勘测设计研究院有限公司,杭州 310061
  • 出版日期:2025-10-28 发布日期:2025-10-28
  • 作者简介:周胡( 1989—) ,男,硕士,高级工程师,主要研究方向为海上风电及新能源数字化。 张蕾蕾( 1993—) ,男,博士,工程师,主要研究方向为新能源、AI算法。 金春伟( 1996—) ,男,硕士,工程师,主要研究方向为新能源、AI算法。 林子义( 1997—) ,男,本科,工程师,主要研究方向为新能源、数字化。 楚文楷( 1996—) ,男,硕士,工程师,主要研究方向为新能源、数字化。

Fault Diagnosis Technology of Large Wind Turbine Pitch Bearing Based on Center-of-Mass Optimization

ZHOU Hu,ZHANG Leilei,JIN Chunwei,LIN Ziyi,CHU Wenkai   

  1. Power China Huadong Engineering Corporation,Hangzhou 310061,China
  • Online:2025-10-28 Published:2025-10-28

摘要: 在风电机变桨轴承输出信号调制捕捉不完全的情况下,利用其选取的类质心并判定轴承故障时,正确诊断的概率较低。 为了提升诊断正确率,开展了基于类质心优化的大型风电机变桨轴承故障诊断技术研究。 利用恒定转矩和特征频率变化的附加分量表征轴承总负载扭矩,通过计算转矩平衡下轴承转子机械角的位置,得到不同位置的轴承调制分量,实现对信号调制的完全捕捉。 采用 Laplacian 矩阵将轴承信号调制分解为若干个基分区,与轴承故障聚类指示矩阵协同,选取优化后的类质心。 在辅助域消除作用下,匹配目标域内轴承输出信号对应的故障类质心,完成大型风电机变桨轴承故障诊断。 在测试结果中,设计技术对轴承内圈故障样本和外圈故障样本的正确诊断水平均达到了 91. 67%以上,提升了诊断准确性。

关键词: 类质心优化, 轴承故障, 恒定转矩, 特征频率变化, 轴承调制分量, 聚类指示矩阵

Abstract: When the modulation capture of the output signal of the wind turbine pitch bearing is incomplete, the probability of correct diagnosis is low when using the selected class centroid to determine the bearing fault. In order to improve diagnostic accuracy,research has been conducted on fault diagnosis technology for large wind turbine variable pitch bearings based on class centroid optimization. The total load torque of the bearing is characterized by the additional components of constant torque and characteristic frequency variation. By calculating the position of the mechanical angle of the bearing rotor under torque balance, the modulation components of the bearing at different positions are obtained, achieving complete capture of signal modulation. The Laplacian matrix is used to modulate and decompose the bearing signal into several base partitions,which are coordinated with the bearing fault clustering indicator matrix to select the optimized centroid. Under the elimination effect of the auxiliary domain, match the fault class centroid corresponding to the bearing output signal in the target domain to complete the fault diagnosis of large wind turbine pitch bearing. In the test results,the design technology achieved a correct diagnostic level of over 91. 67% for both the inner and outer ring fault samples of the bearing,improving diagnostic accuracy.

Key words: class centroid optimization,bearing malfunction,constant torque,characteristic frequency variation,bearing modulation component,fault clustering indicator matrix