微特电机 ›› 2025, Vol. 53 ›› Issue (2): 7-13.

• 设计分析 • 上一篇    下一篇

初级分裂式永磁直线电机的多目标优化

徐振宇1,程  洪1,苏金泽2,李春雨2,程远雄1   

  1. 1. 华中科技大学 机械科学与工程学院,武汉 430074;2. 广东凯特精密机械有限公司,江门 529199
  • 收稿日期:2024-11-25 出版日期:2025-02-28 发布日期:2025-02-26

Multi-Objective Optimization of Partitioned-Primary Permanent Magnet Linear Motor

XU Zhenyu CHENG Hong SU Jinze et al.   

  1. 1 . School of Mechanical Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074,China; 2. Guangdong Height Precision Machinery Co. ,Ltd. ,Jiangmen 529199,China
  • Received:2024-11-25 Online:2025-02-28 Published:2025-02-26

摘要: 提出了一种初级分裂式永磁直线直驱运动单元结构,其电机运用磁调制原理,可以增大电机推力密度,其永磁体与电枢为整体结构且两者分区布置,能够降低永磁体用量并提供更好的散热条件,适合长行程应用。 研究了提升电磁推力的电磁结构设计方法,采用电磁场有限元方法计算了磁阻推力,分析了提高磁阻推力和抑制波动的电磁结构影响因素,结果表明,初级分裂结构能有效提高电机的推力水平。 针对电磁结构参数复杂、性能目标多的问题,利用有限元计算方法建立了电机的 BP 神经网络代理模型,并使用 NSGA-Ⅱ智能优化算法进行多目标优化,优化后电机推力提升 13. 93%,电机推力波动降低 13. 89%。 该分裂式电机在直线直驱运动单元领域具有重要的应用潜力。

关键词: 初级分裂式永磁直线电机, BP 神经网络, NSGA-Ⅱ智能算法, 电磁场有限元

Abstract: A partitioned-primary permanent magnet linear direct-drive motion unit structure was proposed. The motor employed the principle of magnetic modulation to increase motor thrust density. The permanent magnets and armature were integrated and arranged in segments, which reduced the amount of permanent magnets used and provided better heat dissipation conditions, making it suitable for long-stroke applications. The structural design method of segmented
electromagnetic structures was studied to enhance electromagnetic thrust. The reluctance thrust was calculated using the finite element method for electromagnetic fields, and the factors influencing the electromagnetic structure that improve reluctance thrust and suppress fluctuations were analyzed. The results indicate that the segmentation method can effectively enhance the motor's thrust level. Given the complexity of electromagnetic structural parameters and multiple performance targets, a BP neural network surrogate model of the motor was established using the finite element method, and the NSGA-Ⅱ intelligent optimization algorithm was applied for multi-objective optimization. After optimization, the motor’ s thrust was increased by 13. 93%, and thrust fluctuations were reduced by 13. 89%. This partitioned-primary motor holds significant application potential in the field of linear direct-drive motion units.

Key words: partitioned-primary permanent magnet linear motor, BP neural network, NSGA-Ⅱ intelligent algorithm, electromagnetic field finite element

中图分类号: