微特电机 ›› 2024, Vol. 52 ›› Issue (12): 75-79.

• 驱动控制 • 上一篇    

基于改进细菌觅食优化算法的风电机组异动预警技术

魏  勇, 黄  骞   

  1.  水发能源集团有限公司, 济南 250100
  • 收稿日期:2023-11-15 出版日期:2024-12-28 发布日期:2025-01-07
  • 基金资助:
    山东省工业和信息化厅技术创新项目( 202350100992)

Wind Turbine Abnormal Warning Technology Based on Improved Bacterial Foraging Optimization Algorithm

WEI Yong, HUANG Qian   

  1. Shuifa Energy Group Co. , Ltd. , Jinan 250100,China
  • Received:2023-11-15 Online:2024-12-28 Published:2025-01-07

摘要: 提出基于改进细菌觅食优化算法的风电机组异动预警技术。 依据风电机组系统总体结构,分析机组的阶段性工作状态,引入滤波方法获取机组运行状态的基准参量,由此挖掘异动故障特征变量,结合改进细菌觅食优化算法寻找故障最优特征子集,结合机组运行数据构建异动预警模型,计算机组异动故障预测概率与预警指标阈值,从而实现风电机组异动预警。 实例应用结果表明,所提方法得到的预警残差值较小,预警性能更佳。

关键词: 改进细菌觅食优化算法, 风电机组, 异动故障, 故障预警

Abstract: A wind turbine unit abnormal warning technology based on an improved bacterial foraging optimization algorithm was proposed. Based on the overall structure of the wind turbine system, the phased working status of the unit was analyzed, filtering methods were introduced to obtain the benchmark parameters of the unit ’ s operating status, and the characteristic variables of abnormal faults were excavated. Combining with an improved bacterial foraging optimization
algorithm to find the optimal feature subset of faults, and combining with the unit’ s operating data to construct a abnormal warning model, based on this, the computer group predicted the probability of abnormal faults and the threshold of warning indicators, thereby achieving abnormal wind turbine warning. The application results of the example show that the proposed method obtained smaller residual values for early warning and better early warning performance.

Key words: improving bacterial foraging optimization algorithms, wind turbines, abnormal fault, fault warning

中图分类号: