微特电机 ›› 2024, Vol. 52 ›› Issue (9): 60-64.

• 驱动控制 • 上一篇    下一篇

基于 AutoGluon 模型的发电机主轴承故障诊断方法

田  薇1,2,蔡刚毅1,2,王  蕾1,傅  莉1   

  1. 1. 浙江省特种设备科学研究院,杭州 310020; 2. 浙江省特种设备安全检测技术研究重点实验室,杭州 310020
  • 收稿日期:2024-04-08 出版日期:2024-09-28 发布日期:2024-10-06

Fault Diagnosis Method for Generator Main Bearings Based on AutoGluon

TIAN Wei1,2, CAI Gangyi1,2, WANG Lei1, FU Li1   

  1. 1. Zhejiang Academy of Special Equipment Science,Hangzhou 310020,China;
    2. Key Laboratory of Special Equipment Safety Testing Technology of Zhejiang Province,Hangzhou 310020,China
  • Received:2024-04-08 Online:2024-09-28 Published:2024-10-06

摘要: 主轴承故障会对发电机可靠性和运行效率造成严重影响。 为提高主轴承故障的准确诊断效率,基于自动机器学( Automated Machine Learning,AutoML) 的 AutoGluon 算法模型,提出了一种实时、快速的故障诊断方法。 对采集到的发电机主轴承原始信号数据进行了特征工程处理;根据人工经验对样本数据集打上故障和非故障标签,按照 8 ∶ 2的比例将样本划分训练集与测试集;利用 AutoGluon 模型进行训练,包括自动化的模型选择和超参数调优,并通过与传统机器学习模型( 随机森林、极致梯度提升树) 进行比较。 实验结果表明:采用 AutoGluon 模型的主轴承故障诊断方法在准确率、召回率方面取得了显著的效果,分别达到了 83. 14% 和 60. 74%,高于经过超参数调优后的随机森林和极致梯度提升树模型。 该方法还能够快速且准确地诊断出主轴承当前的状态,具有较高的诊断准确性和鲁棒性,在发电机主轴承故障诊断领域具有一定的应用前景。

关键词: 主轴承, 自动机器学习, AutoGluon, 故障诊断

Abstract: The failure of the main bearing will have a serious impact on the reliability and operational efficiency of generator. To improve the accurate diagnosis efficiency of main bearing faults, the proposes a real-time and fast fault diagnosis method based on the AutoGluon algorithm model of Automated Machine Learning ( AutoML) . Feature engineering processing was performed on the raw signal data of the main bearings of the generator collected; based on manual experience, label the sample dataset with fault and non fault labels, and divide the samples into training and testing sets in an 8 ∶ 2 ratio; The AutoGluon model was used for training, including automated model selection and hyperparameter tuning, and its effectiveness was verified by comparing it with traditional machine learning models such as random forests and extreme gradient boosting trees. The experimental results show that the main bearing fault diagnosis method using the
AutoGluon model has achieved significant results in accuracy and recall, reaching 83. 14% and 60. 74%, respectively, higher than the random forest and extreme gradient boosting tree models optimized by hyperparameters. This method can quickly and accurately diagnose the current state of the main bearing, with high diagnostic accuracy and robustness, and has certain application prospects in the field of generator main bearing fault diagnosis.

Key words: main bearings, automatic machine learning( AutoML), AutoGluon, fault diagnosis

中图分类号: