微特电机 ›› 2023, Vol. 50 ›› Issue (8): 67-.

• 机器人技术 • 上一篇    

基于改进双目视觉和掩膜区域卷积神经网络的空间定位方法研究

李  洵 1 , 卫  薇 1 , 舒  彧 1 , 赵文彬 2   

  1.  1. 贵州电网有限责任公司信息中心, 贵阳, 550003; 2. 上海电力大学 电气工程学院,上海 201306
  • 收稿日期:2022-10-17 出版日期:2023-08-28 发布日期:2023-08-30

Space Location Method Based on Improved Binocular Vision and Mask RCNN

LI Xun 1 , WEI Wei 1 , SHU Yu 1 , ZHAO Wenbin 2   

  1. 1. Guizhou Power Grid Co. , Ltd. , Information Center, Guizhou 550003, China;
    2. School of Electrical Engineering, Shanghai University of Electric Power,Shanghai 201306, China
  • Received:2022-10-17 Online:2023-08-28 Published:2023-08-30

摘要: 针对实际应用时监控图像中外破危险点选取不准和标定空间不足等问题,提出外破危险点自动选取算法并改进了双目立体视觉的标定过程,实现了双目立体视觉测距技术在复杂环境廊道外破距离测量中的实际应用。总结了理想状况下大场景中外破风险测距的双目立体视觉算法。 使用掩膜神经网络识别外破轮廓和距离线路最近的危险点。 针对可能出现的复杂地形,提出减少标定区域的部分标定法。 选取部分典型外破入侵场景验证危险点提取算法和标定方法的有效性。 结果表明,此改进算法在监测施工机械类外破时的危险点识别精度保持在 0. 3 m 以下,且可以使双目测距应用于复杂环境下的线路外破监测任务。

关键词: 双目立体视觉, 测距技术, 线路外破监测, 掩膜区域卷积神经网络, 部分标定

Abstract: Aiming at the problems of inaccurate selection of invasive hazards points in monitoring images and insufficient calibration space in actual applications, this paper proposes an automatic selection algorithm for invasive hazards points and improves the calibration process of binocular stereo vision. Practical application in the measurement of the invasive hazards distance of the corridor in the complex environment. The article first summarizes the binocular stereo vision algorithm for the risk measurement of invasive hazards in large scenes under ideal conditions. Then, Mask RCNN is used to identify the outer broken contour and the dangerous point closest to the line. At the same time, for the possible complex terrain, a partial calibration method to reduce the calibration area is proposed. Finally, some typical external breach intrusion scenarios are selected to verify the effectiveness of the dangerous point extraction algorithm and calibration method. The results show that the improved algorithm keeps the identification accuracy of dangerous points below 0. 2 m when monitoring the external damage of construction machinery, and can make the binocular distance measurement applied to the task of monitoring external damage of the line in the complex environment.

Key words: binocular stereo vision, distance measurement, transmission line monitoring, mask region convolutional neural network( Mask-RCNN), partial calibration

中图分类号: